Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemphyschem ; 25(14): e202400246, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656666

RESUMO

In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.

3.
J Am Chem Soc ; 145(9): 5163-5173, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790737

RESUMO

In natural and artificial photosynthesis, light absorption and catalysis are separate processes linked together by exergonic electron transfer. This leads to free energy losses between the initial excited state, formed after light absorption, and the active catalyst formed after the electron transfer cascade. Additional deleterious processes, such as internal conversion (IC) and vibrational relaxation (VR), also dissipate as much as 20-30% of the absorbed photon energy. Minimization of these energy losses, a holy grail in solar energy conversion and solar fuel production, is a challenging task because excited states are usually strongly coupled which results in negligible kinetic barriers and very fast dissipation. Here, we show that topological control of oligomeric {Ru(bpy)3} chromophores resulted in small excited-state electronic couplings, leading to activation barriers for IC by means of inter-ligand electron transfer of around 2000 cm-1 and effectively slowing down dissipation. Two types of excited states are populated upon visible light excitation, that is, a bridging-ligand centered metal-to-ligand charge transfer [MLCT(Lm)], and a 2,2'-bipyridine-centered MLCT [MLCT(bpy)], which lies 800-1400 cm-1 higher in energy. As a proof-of-concept, bimolecular electron transfer with tri-tolylamine (TTA) as electron donor was performed, which mimics catalyst activation by sacrificial electron donors in typical photocatalytic schemes. Both excited states were efficiently quenched by TTA. Hence, this novel strategy allows to trap higher energy excited states before IC and VR set in, saving between 100 and 170 meV. Furthermore, transient absorption spectroscopy suggests that electron transfer reactions with TTA produced the corresponding Lm•--centered and bpy•--centered reduced photosensitizers, which involve different reducing abilities, that is, -0.79 and -0.93 V versus NHE for Lm•- and bpy•-, respectively. Thus, this approach probably leads in fine to a 140 meV more potent reductant for energy conversion schemes and solar fuel production. These results lay the first stone for anti-dissipative energy conversion schemes which, in bimolecular electron transfer reactions, harness the excess energy saved by controlling dissipative conversion pathways.

4.
Phys Chem Chem Phys ; 24(43): 26428-26437, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36193842

RESUMO

Internal conversion (IC) coupled to vibrational relaxation (VR) in molecular chromophores is a source of major energy losses in natural and artificial solar-to-chemical energy conversion schemes. The development of anti-Kasha chromophores, where dissipative IC channels are blocked, is a promising strategy to boost energy conversion efficiencies. In this contribution, we demonstrate the presence of an unusually high kinetic barrier for IC in [Ru(tpm)(bpy)(NCS)]+ (RuNCS), where tpm is tris(1-pyrazolyl)methane and bpy is 2,2'-bipyridine, by means of an arsenal of temperature-dependent spectroscopic methods including nanosecond and femtosecond transient absorption spectroscopies. These studies are complemented with theoretical investigations, that provide a detailed atomistic description of the dissipation process, including the electronic structures of the excited states involved. The observed IC is mainly a hole reconfiguration within the octahedral t2g set of the Ru ion, with contributions from a Ru to NCS charge transfer. Thus, in a Marcus picture, inner and outer reorganizations contribute to the observed barrier. The results presented here show that wavefunction symmetry within a molecular chromophore can be exploited to inhibit dissipative IC. Finally, guidelines for the design of anti-Kasha chromophores that prevent dissipation in energy conversion schemes, based on minimum energy conical intersection calculations, are provided.

5.
Chemphyschem ; 23(20): e202200384, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35785464

RESUMO

The exploitation of excited state chemistry for solar energy conversion or photocatalysis has been continuously increasing, and the needs of a transition to a sustainable human development indicate this trend will continue. In this scenario, the study of mixed valence systems in the excited state offers a unique opportunity to explore excited state electron transfer reactivity, and, in a broader sense, excited state chemistry. This Concept article analyzes recent contributions in the field of photoinduced mixed valence systems, i. e. those where the mixed valence core is absent in the ground state but created upon light absorption. The focus is on the utilization of photoinduced intervalence charge transfer bands, detected via transient absorption spectroscopy, as key tools to study fundamental phenomena like donor/acceptor inversion, hole delocalization, coexistence of excited states and excited state nature, together with applications in molecular electronics.


Assuntos
Transporte de Elétrons , Humanos , Análise Espectral
6.
Phys Chem Chem Phys ; 24(24): 15121-15128, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35699139

RESUMO

The ground state and photoinduced mixed valence states (GSMV and PIMV, respectively) of a dinuclear (Dp4+) ruthenium(II) complex bearing 2,2'-bipyridine ancillary ligands and a 2,2':4',4'':2'',2'''-quaterpyridine (Lp) bridging ligand were investigated using femtosecond and nanosecond transient absorption spectroscopy, electrochemistry and density functional theory. It was shown that the electronic coupling between the transiently light-generated Ru(II) and Ru(III) centers is HDA ∼ 450 cm-1 in the PIMV state, whereas the electrochemically generated GSMV state showed HDA ∼ 0 cm-1, despite virtually identical Ru-Ru distances. This stemmed from the changes in dihedral angles between the two bpy moieties of Lp, estimated at 30° and 4° for the GSMV and PIMV states, respectively, consistent with a through-bond rather than a through-space mechanism. Electronic coupling can be turned on by using visible light excitation, making Dp4+ a competitive candidate for photoswitching applications. A novel strategy to design photoinduced charge transfer molecular switches is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...