Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 161802, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925710

RESUMO

We present a new measurement of the positive muon magnetic anomaly, a_{µ}≡(g_{µ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{µ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{µ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{µ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.

2.
Sci Total Environ ; 806(Pt 2): 150563, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601178

RESUMO

In their natural environment, date palms are exposed to chronic atmospheric ozone (O3) concentrations from local and remote sources. In order to elucidate the consequences of this exposure, date palm saplings were treated with ambient, 1.5 and 2.0 times ambient O3 for three months in a free-air controlled exposure facility. Chronic O3 exposure reduced carbohydrate contents in leaves and roots, but this effect was much stronger in roots. Still, sucrose contents of both organs were maintained at elevated O3, though at different steady states. Reduced availability of carbohydrate for the Tricarboxylic acid cycle (TCA cycle) may be responsible for the observed reduced foliar contents of several amino acids, whereas malic acid accumulation in the roots indicates a reduced use of TCA cycle intermediates. Carbohydrate deficiency in roots, but not in leaves caused oxidative stress upon chronic O3 exposure, as indicated by enhanced malonedialdehyde, H2O2 and oxidized glutathione contents despite elevated glutathione reductase activity. Reduced levels of phenolics and flavonoids in the roots resulted from decreased production and, therefore, do not indicate oxidative stress compensation by secondary compounds. These results show that roots of date palms are highly susceptible to chronic O3 exposure as a consequence of carbohydrate deficiency.


Assuntos
Ozônio , Phoeniceae , Antioxidantes , Peróxido de Hidrogênio , Ozônio/toxicidade , Folhas de Planta
3.
Phys Rev Lett ; 126(14): 141801, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891447

RESUMO

We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{µ}≡(g_{µ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω[over ˜]_{p}^{'} in a spherical water sample at 34.7 °C. The ratio ω_{a}/ω[over ˜]_{p}^{'}, together with known fundamental constants, determines a_{µ}(FNAL)=116 592 040(54)×10^{-11} (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both µ^{+} and µ^{-}, the new experimental average of a_{µ}(Exp)=116 592 061(41)×10^{-11} (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.

4.
Phytopathology ; 110(2): 393-405, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31532351

RESUMO

Wheat blast is a devastating disease caused by the Triticum pathotype of Magnaporthe oryzae. M. oryzae Triticum is capable of infecting leaves and spikes of wheat. Although symptoms of wheat spike blast (WSB) are quite distinct in the field, symptoms on leaves (WLB) are rarely reported because they are usually inconspicuos. Two field experiments were conducted in Bolivia to characterize the change in WLB and WSB intensity over time and determine whether multispectral imagery can be used to accurately assess WSB. Disease progress curves (DPCs) were plotted from WLB and WSB data, and regression models were fitted to describe the nature of WSB epidemics. WLB incidence and severity changed over time; however, the mean WLB severity was inconspicuous before wheat began spike emergence. Overall, both Gompertz and logistic models helped to describe WSB intensity DPCs fitting classic sigmoidal shape curves. Lin's concordance correlation coefficients were estimated to measure agreement between visual estimates and digital measurements of WSB intensity and to estimate accuracy and precision. Our findings suggest that the change of wheat blast intensity in a susceptible host population over time does not follow a pattern of a monocyclic epidemic. We have also demonstrated that WSB severity can be quantified using a digital approach based on nongreen pixels. Quantification was precise (0.96 < r> 0.83) and accurate (0.92 < ρ > 0.69) at moderately low to high visual WSB severity levels. Additional sensor-based methods must be explored to determine their potential for detection of WLB and WSB at earlier stages.


Assuntos
Magnaporthe , Modelos Estatísticos , Imagem Óptica , Triticum , Bolívia , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Fatores de Tempo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...