Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n-dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumours, and WRN inhibitors are in development. Here, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth In vitro and In vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA-repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair (MMR) alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft (PDX) models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic-lethal targeting of WRN in MSI cancer and tools to dissect WRN biology.

2.
Blood Adv ; 1(26): 2553-2562, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29296907

RESUMO

Neutropenia is a common consequence of radiation and chemotherapy in cancer patients. The resulting immunocompromised patients become highly susceptible to potentially life-threatening infections. Granulocyte colony-stimulating factor (G-CSF) is known to stimulate neutrophil production and is widely used as a treatment of chemotherapy-induced neutropenia. A small-molecule G-CSF secretagogue without a requirement for refrigerated supply chain would offer a more convenient and cost-effective treatment of chemotherapy-induced neutropenia. Bacterial lipopeptides activate innate immune responses through Toll-like receptor 2 (TLR2) and induce the release of cytokines, including G-CSF, from macrophages, monocytes, and endothelial. Pam2CSK4 is a synthetic lipopeptide that effectively mimics bacterial lipoproteins known to activate TLR2 receptor signaling through the TLR2/6 heterodimer. Substrate-based drug design led to the discovery of GSK3277329, which stimulated the release of G-CSF in activated THP-1 cells, peripheral blood mononuclear cells, and human umbilical vein endothelial cells. When administered subcutaneously to cynomolgus monkeys (Macaca fascicularis), GSK3277329 caused systemic elevation of G-CSF and interleukin-6 (IL-6), but not IL-1ß or tumor necrosis factor α, indicating a selective cytokine-stimulation profile. Repeat daily injections of GSK3277329 in healthy monkeys also raised circulating neutrophils above the normal range over a 1-week treatment period. More importantly, repeated daily injections of GSK3277329 over a 2-week period restored neutrophil loss in monkeys given chemotherapy treatment (cyclophosphamide, Cytoxan). These data demonstrate preclinical in vivo proof of concept that TLR2 agonism can drive both G-CSF induction and subsequent neutrophil elevation in the cynomolgus monkey and could be a therapeutic strategy for the treatment of chemotherapy-induced neutropenia.

3.
J Med Chem ; 59(8): 3991-4006, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27031670

RESUMO

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction. X-ray crystallographic screening identified three distinct "hot-spots" for fragment binding within the NRF2 binding pocket of KEAP1, allowing progression of a weak fragment hit to molecules with nanomolar affinity for KEAP1 while maintaining drug-like properties. This work resulted in a promising lead compound which exhibits tight and selective binding to KEAP1, and activates the NRF2 antioxidant response in cellular and in vivo models, thereby providing a high quality chemical probe to explore the therapeutic potential of disrupting the KEAP1-NRF2 interaction.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Células Cultivadas , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Fator 2 Relacionado a NF-E2/química , Ligação Proteica
4.
J Med Chem ; 58(18): 7431-48, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26355916

RESUMO

A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9H-purin-6-yl)amino)-N-methyl-benzenesulfonamide (1) is disclosed along with fundamental structure-function relationships that delineate the role of each element of 1 for TNNI3K recognition. An X-ray structure of 1 bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure-activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8-7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in in vitro and in vivo experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Purinas/química , Administração Oral , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Masculino , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases , Purinas/farmacocinética , Purinas/farmacologia , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
5.
Bioorg Med Chem Lett ; 20(8): 2512-5, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20236823

RESUMO

Antagonism of the gonadotropin releasing hormone (GnRH) receptor has resulted in positive clinical results in reproductive tissue disorders such as endometriosis and prostate cancer. Following the recent discovery of orally active GnRH antagonists based on a 4-piperazinylbenzimidazole template, we sought to investigate the properties of heterocyclic isosteres of the benzimidazole template. We report here the synthesis and biological activity of eight novel scaffolds, including imidazopyridines, benzothiazoles and benzoxazoles. The 2-(4-tert-butylphenyl)-8-(piperazin-1-yl)imidazo[1,2-a]pyridine ring system was shown to have nanomolar binding potency at the human and rat GnRH receptors as well as functional antagonism in vitro. Additional structure-activity relationships within this series are reported along with a pharmacokinetic comparison to the benzimidazole-based lead molecule.


Assuntos
Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Receptores LHRH/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células Cultivadas , Meia-Vida , Compostos Heterocíclicos/farmacocinética , Humanos , Masculino , Piperazinas/farmacocinética , Ratos , Ratos Sprague-Dawley
6.
J Med Chem ; 52(7): 2148-52, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19271735

RESUMO

A potent, highly insoluble, GnRH antagonist with a 2-phenyl-4-piperazinylbenzimidazole template and a quinoxaline-2,3-dione pharmacophore was modified to maintain GnRH antagonist activity and improve in vitro pharmaceutical properties. Structural changes to the quinoxaline-2,3-dione portion of the molecule resulted in several structures with improved properties and culminated in the discovery of 6-([4-[2-(4-tert-butylphenyl)-1H-benzimidazol-4-yl]piperazin-1-yl] methyl)quinoxaline (WAY-207024). The compound was shown to have excellent pharmacokinetic parameters and lowered rat plasma LH levels after oral administration.


Assuntos
Benzimidazóis/síntese química , Quinoxalinas/síntese química , Receptores LHRH/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Ligação Competitiva , Disponibilidade Biológica , Meia-Vida , Humanos , Técnicas In Vitro , Hormônio Luteinizante/sangue , Masculino , Microssomos Hepáticos/metabolismo , Orquiectomia , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Quinoxalinas/química , Quinoxalinas/farmacologia , Ensaio Radioligante , Ratos , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 19(7): 1986-90, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19251413

RESUMO

A previous report described the serum LH suppression pharmacology of the 2-phenyl-4-piperazinyl-benzimidazole N-ethyluracil GnRH receptor antagonist 1 following oral administration in rats. A series of small heterocycles were appended to the 2-(4-tert-butylphenyl)-4-piperazinyl-benzimidazole template in place of the N-ethyluracil. Two imidazole analogues, 32 and 41, were shown to possess substantial in vitro potency at the target receptor (hGnRH IC(50) = 7 and 18 nM, respectively) and aqueous solubility (55 and 100 microg/mL at pH 7.4, respectively). Both compounds had high oral bioavailability in rats and 32 was further examined in an orchidectomized rat model for serum LH suppression based on increased volume of distribution over 41. Serum LH levels trended lower in orchidectomized rats following oral administration of 32.


Assuntos
Benzimidazóis/farmacologia , Piperazinas/farmacologia , Receptores LHRH/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/química , Benzimidazóis/farmacocinética , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hormônio Luteinizante/sangue , Modelos Animais , Piperazinas/química , Piperazinas/farmacocinética , Ratos , Receptores LHRH/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
8.
Curr Pharm Des ; 12(30): 3915-28, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17073687

RESUMO

Mammalian reproduction is a complex physiological process involving a tightly regulated hypothalamic-pituitary-gonadal axis and the integration of a diverse array of molecular signals. Oral contraceptives (OCs) were introduced over 40 years ago and have evolved over the years through the discovery of new estrogens and progestins, the development of progestin-only pills and the reduction of the estrogen content in combined OCs. Despite the developments that improved the safety profile of current OCs, adverse metabolic and vascular effects caused by the estrogen component and possible neoplastic effects of OCs remain and, thus, necessitate efforts to develop newer, possibly non-steroidal and non-hormonal, contraceptives. Recent advances in our understanding of ovarian endocrinology, coupled with molecular biology and transgenic technology, have enabled identification of several factors that are functionally critical in the regulation of female fertility. Progress in the area of female reproduction is showing great promise for identifying new contraceptive drug targets. In this article, the authors review the field of female contraception with emphasis on novel targets involved in reproductive function and identified through genomics and proteomics. In addition, the usefulness of these targets for contraception purposes will be discussed.


Assuntos
Anticoncepcionais Femininos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fertilidade/efeitos dos fármacos , Fertilidade/fisiologia , Anticoncepcionais Orais Combinados/administração & dosagem , Feminino , Humanos , Infertilidade Feminina/sangue , Infertilidade Feminina/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...