Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0140694, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492563

RESUMO

TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation.


Assuntos
Antígenos CD/metabolismo , Interleucina-2/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Genes Reporter , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Ativação Linfocitária/imunologia , Proteínas de Membrana/química , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Linfócitos T/citologia , Linfócitos T/metabolismo
2.
Alcohol Clin Exp Res ; 37(11): 1838-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23895226

RESUMO

BACKGROUND: Transforming growth factor beta 1 (TGF-ß1) is a pleiotropic cytokine that activates hepatic stellate cell (HSC) proliferation, but inhibits parenchymal cell proliferation. Therefore, we hypothesize that TGF-ß1 regulates HSC proliferation and elucidated its molecular action. METHODS: In order to elucidate the molecular mechanism whereby TGF-ß1 up-regulates platelet derived growth factor beta (PDGF-ß) receptor mRNA and induces a delayed proliferation of HSC, we used proliferation and apoptosis assays as well as RT-PCR, Western blot analysis, immunostaining, and flow cytometry in mouse and rat HSC. RESULTS: We show that TGF-ß1 markedly induces the proliferation of mouse HSC in culture with concomitant 2.1-fold (p < 0.001) stimulation in [(3) H]-thymidine incorporation into cellular DNA. This induction is maximal between 24 and 36 hours postcytokine exposure that is triggered by 7.6-fold (p < 0.001) up-regulation of PDGF-ß receptor mRNA and associated increase in PDGF-ß receptor protein after 48 hours. TGF-ß1-dependent HSC proliferation is mimicked by H2 O2 that is inhibited by catalase, implying that TGF-ß1 action is mediated via reactive oxygen species. HSC proliferation is blunted by PDGF-ß receptor-neutralizing antibody as well as by specific inhibitors of PI3 kinase (PI3K), AKT, and p70(S6K) , indicating that the action of TGF-ß1 involves the activation of PDGF-ß receptor via the PI3K/AKT/p70(S6K) signaling pathway. TGF-ß1 also induces a reorganization of actin and myosin filaments and cell morphology leading to the formation of palisades although their myosin and actin contents remained constant. These findings suggest that TGF-ß1-mediated oxidative stress causes the transdifferentiation of HSC and primes them for extracellular matrix (ECM) deposition and scar contraction. CONCLUSIONS: We conclude that liver injury up-regulates TGF-ß1 that inhibits parenchymal cell proliferation, but stimulates HSC proliferation leading to the production of ECM and type I collagen resulting in fibrosis.


Assuntos
Células Estreladas do Fígado/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Becaplermina , Proliferação de Células , Tamanho Celular , Células Cultivadas , Células Estreladas do Fígado/citologia , Peróxido de Hidrogênio/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Transdução de Sinais
3.
Hybridoma (Larchmt) ; 30(2): 153-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21529288

RESUMO

ST2L is a transmembrane receptor that belongs to the IL-1 receptor family. The receptor is expressed on various cell types including Th2 cells, mast cells, basophils, growth-activated fibroblasts, and vascular endothelial cells. ST2L activation by its ligand IL-33 has been implicated in Th2-mediated immunity, inflammation, and allergic responses in vivo. Inhibition of ST2L activity can attenuate Th2-dominated immune responses such as lung eosinophilia, airway hyper-responsiveness, and arthritis in animal models. Here we report the generation and in vitro characterization of a panel of rat anti-mouse ST2L monoclonal antibodies. We demonstrate that the antibodies specifically bind to recombinant receptor protein and that a subset of the binders inhibits mouse ST2L activity in multiple in vitro assays. Four of the identified anti-mouse ST2L antibodies were shown to prevent IL-33 from binding to ST2L, down-regulate IL-33-induced NF-κB signaling, and neutralize the ability of IL-33 to stimulate mouse Th2 cell proliferation. The characterized monoclonal antibodies are important tools that will be used to study mouse ST2L receptor functionality in vivo.


Assuntos
Anticorpos Monoclonais , Interleucinas/imunologia , Receptores de Interleucina-1/imunologia , Proteínas Recombinantes/imunologia , Transdução de Sinais/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos , Biotina/química , Biotina/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Células HEK293 , Humanos , Hibridomas/imunologia , Hibridomas/metabolismo , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Imunoconjugados/química , Imunoconjugados/metabolismo , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-1/imunologia , Interleucina-33 , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia , Células Th2/imunologia , Transfecção
4.
Protein Expr Purif ; 55(2): 279-86, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17646110

RESUMO

While well established in bacterial hosts, the effect of coding sequence variation on protein expression in mammalian systems is poorly characterized outside of viral proteins or proteins from distant phylogenetic families. The potential impact is substantial given the extensive use of mammalian expression systems in research and manufacturing of protein biotherapeutics. We are studying the effect of codon engineering on expression of recombinant antibodies with an emphasis on developing manufacturing cell lines. CNTO 888, a human mAb specific for human MCP-1, was obtained by antibody phage display in collaboration with MorphoSys AG. The isolated DNA sequence of the antibody was biased towards bacterial codons, reflecting the engineering of the Fab library for phage display expression in Escherichia coli. We compared the expression of CNTO 888 containing the parental V-region sequences with two engineered coding variants. In the native codon exchanged (NCE) variant, the V-region codons were replaced with those used in naturally derived human antibody genes. In the human codon optimized (HCO) variant the V-region codons were those used at the highest frequency based on a human codon usage table. The antibody expression levels from stable transfections in mammalian host cells were measured. The HCO codon variant of CNTO 888 yielded the highest expressing cell lines and the highest average expression for the screened populations. This had a significant positive effect on the process to generate a CNTO 888 production cell line and indicates the potential to improve antibody expression in mammalian expression systems by codon engineering.


Assuntos
Anticorpos Monoclonais/genética , Códon , Engenharia Genética , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Sequência de Bases , Linhagem Celular , DNA Recombinante , Humanos , Dados de Sequência Molecular , Plasmídeos
5.
Am J Physiol Gastrointest Liver Physiol ; 291(6): G1051-61, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16990448

RESUMO

Increased expression of PDGF-beta receptors is a landmark of hepatic stellate cell activation and transdifferentiation into myofibroblasts. However, the molecular mechanisms that regulate the fate of the receptor are lacking. Recent studies suggested that N-acetylcysteine enhances the extracellular degradation of PDGF-beta receptor by cathepsin B, thus suggesting that the absence of PDGF-beta receptors in quiescent cells is due to an active process of elimination and not to a lack of expression. In this communication we investigated further molecular mechanisms involved in PDGF-beta receptor elimination and reappearance after incubation with PDGF-BB. We showed that in culture-activated hepatic stellate cells there is no internal protein pool of receptor, that the protein is maximally phosphorylated by 5 min and completely degraded after 1 h by a lysosomal-dependent mechanism. Inhibition of receptor autophosphorylation by tyrphostin 1296 prevented its degradation, but several proteasomal inhibitors had no effect. We also showed that receptor reappearance is time and dose dependent, being more delayed in cells treated with 50 ng/ml (48 h) compared with 10 ng/ml (24 h).


Assuntos
Hepatócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/administração & dosagem , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Becaplermina , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...