Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Prat ; 73(9): 964-968, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-38294444

RESUMO

ORGAN CONSERVATION AND TRANSPORTATION MODALITIES. Organ preservation in transplantation is an essential step in the graft journey between the donor and the recipient. The modalities of preservation have become a major element in this process given the evolution of donors in terms of age and associated comorbidities. This situation has led to the evolution of preservation in terms of the composition of solutions and perfusion technologies for all organs. Several concepts have thus emerged with extracellular type composition and the contribution of new molecules such as high molecular weight polyethylene glycols. The evolution also concerns new techniques such as normothermic abdominal circulation and perfusion machines with the use of hypothermia or normothermia and the oxygenation of the medium. Finally, new molecules are available to the teams and other concepts such as perfusion, evaluation and rehabilitation units.


MODALITÉS DE CONSERVATION ET DE TRANSPORT DES ORGANES. La conservation des organes est une étape essentielle dans le parcours du greffon entre le donneur et le receveur. Les modalités de conservation sont devenues un élément majeur dans ce processus compte tenu de l'évolution de l'âge des donneurs et des comorbidités associées. Cette situation a conduit à faire évoluer la conservation en matière de composition des solutions et de technologie de perfusion, et cela pour tous les organes. Plusieurs concepts ont ainsi émergé, avec la composition de type extracellulaire et l'apport de nouvelles molécules comme les polyéthylènes glycols de haut poids moléculaire. Les progrès concernent aussi de nouvelles techniques, comme la circulation régionale normothermique et les machines de perfusion avec l'utilisation de l'hypothermie ou de la normothermie et l'oxygénation du milieu. Enfin, de nouvelles molécules sont à disposition des équipes, et d'autres concepts se développent, comme les unités de perfusion, d'évaluation et de réhabilitation.


Assuntos
Medicina , Humanos , Polietilenoglicóis , Doadores de Tecidos
2.
Arterioscler Thromb Vasc Biol ; 41(12): e512-e523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706557

RESUMO

OBJECTIVE: Gestational hypercholesterolemia concomitantly with a highly oxidative environment is associated with higher atherosclerosis in human and animal offspring. This work aimed to determine whether perinatal administration of a C-phycocyanin concentrate, a powerful antioxidant, can protect against atherosclerosis development in genetically hypercholesterolemic mice in adult life. Approach and Results: C-Phycocyanin was administered during gestation solely or gestation and lactation to apolipoprotein E-deficient mice. Male and female offspring were studied until 25 weeks old. Progenies born to supplemented mothers displayed significantly less atherosclerotic root lesions than control group in all groups excepted in male supplemented during gestation and lactation. Female born to supplemented mothers had a greater gallbladder total bile acid pool, lower secondary hydrophobic bile acid levels such as lithocholic acid, associated with less plasma trimethylamine N-oxide at 16 weeks old compared with control mice. Regarding male born to C-Phycocyanin administrated mothers, they expressed a higher high-density lipoprotein cholesterol level, more soluble bile acids such as ß-muricholic acids, and a decreased plasma trimethylamine at 16 weeks old. Liver reduced-to-oxidized glutathione ratio were increased and liver gene expression of superoxide dismutase and glutathione peroxidase were significantly decreased in male born to gestational supplemented mothers. No difference in the composition of cecal microbiota was found between groups, regardless of sex. CONCLUSIONS: Our findings suggest a protective effect of perinatal antioxidant administration on atherosclerosis development in apolipoprotein E-deficient mice involving sex-specific mechanisms.


Assuntos
Aterosclerose/prevenção & controle , Colesterol/metabolismo , Metilaminas/metabolismo , Ficocianina/administração & dosagem , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Oxid Med Cell Longev ; 2021: 9986299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257827

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a dysmetabolic hepatic damage of increasing severity: simple fat accumulation (steatosis), nonalcoholic steatohepatitis (NASH), and hepatic fibrosis. Oxidative stress is considered an important factor in producing hepatocyte injury associated with NAFLD progression. Studies also suggest a link between the accumulation of specific hepatic lipid species, mitochondrial dysfunction, and the progression of NAFLD. However, it is unclear whether mitochondrial lipid modifications are involved in NAFLD progression. To gain insight into the relationship between mitochondrial lipids and disease progression through different stages of NAFLD, we performed lipidomic analyses on mouse livers at different stages of western diet-induced NAFLD, with or without hepatic fibrosis. After organelle separation, we studied separately the mitochondrial and the "nonmitochondrial" hepatic lipidomes. We identified 719 lipid species from 16 lipid families. Remarkably, the western diet triggered time-dependent changes in the mitochondrial lipidome, whereas the "nonmitochondrial" lipidome showed little difference with levels of hepatic steatosis or the presence of fibrosis. In mitochondria, the changes in the lipidome preceded hepatic fibrosis. In particular, two critical phospholipids, phosphatidic acid (PA) and cardiolipin (CL), displayed opposite responses in mitochondria. Decrease in CL and increase in PA were concurrent with an increase of coenzyme Q. Electron paramagnetic resonance spectroscopy superoxide spin trapping and Cu2+ measurement showed the progressive increase in oxidative stress in the liver. Overall, these results suggest mitochondrial lipid modifications could act as an early event in mitochondrial dysfunction and NAFLD progression.


Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Estresse Oxidativo/genética , Animais , Humanos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia
4.
Eur J Nutr ; 60(8): 4483-4494, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34110469

RESUMO

PURPOSE: Metabolic syndrome is characterized by hyperglycemia, hyperlipemia and exacerbated oxidative stress. The aim of the study was to determine whether Spirulysat®, a Spirulina liquid extract (SLE) enriched in phycocyanin, would prevent metabolic abnormalities induced by high-fat diet. METHODS: The effect of acute SLE supplementation on postprandial lipemia and on triton-induced hyperlipidemia was studied in hamster fed control diet (C). The effect of chronic SLE supplementation on lipid content in plasma, liver and aorta, and on glycemia and oxidative stress was studied in hamster fed control (C) or high-fat diet (HF) for two weeks and then treated with SLE for two weeks (CSp and HFSp) or not (C and HF). RESULTS: The acute SLE supplementation lowered plasma cholesterol and non-esterified fatty acid concentrations after olive oil gavage (P < 0.05) in CSp, while no effect was observed on triglyceridemia. HFD increased plasma MDA, basal glycemia, triglyceridemia, total plasma cholesterol, VLDL, LDL and HDL cholesterol, ceramide, sphingomyelin and glucosylceramide content in liver in HF compared to C (P < 0.05). SLE did not affect SOD and GPx activities nor total antioxidant status in HFSp group but lowered glycemia, glucoceramide and cholesterol in liver and cholesterol in aorta compared to HF (P < 0.05). SLE also decreased HMGCoA and TGF-ß1 gene expression in liver (P < 0.05) and tended to lower G6Pase (P = 0.068) gene expression in HFSp compared to HF. CONCLUSION: Although 2-week SLE supplementation did not affect oxidative stress, it protected from hyperglycemia and lipid accumulation in liver and aorta suggesting a protective effect against metabolic syndrome.


Assuntos
Dieta Hiperlipídica , Spirulina , Animais , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Fígado , Extratos Vegetais/farmacologia , Esfingolipídeos
5.
Nutrients ; 13(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918417

RESUMO

Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE-/-) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.


Assuntos
Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/prevenção & controle , Daucus carota , Suplementos Nutricionais , Placa Aterosclerótica/terapia , Animais , Aorta/patologia , Apolipoproteínas E/deficiência , Débito Cardíaco , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/genética , Ceco/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Peroxidação de Lipídeos , Lipogênese , Lipoproteínas VLDL/sangue , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Propionatos/metabolismo , Triglicerídeos/sangue , Aumento de Peso
6.
Biomedicines ; 8(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198144

RESUMO

Epidemiological studies describe the association between apple consumption and improved cardiovascular and metabolic dysfunction. Our recent multiparametric screening on cellular model studies has shown that apples exhibit vascular tropism including Granny Smith (GS) variety independently of the storage condition. The present study aimed to evaluate the cardiovascular and metabolic protection of supplementation of GS variety after storage in classic cold (GSCC) and extreme ultra-low oxygen conditions (GSXO) in the apolipoprotein E-deficient 8-week-old mice fed with high fat diet for 14 weeks. Supplementation with GSCC and GXO decreases circulating triglycerides, the expression of genes involved in lipogenesis, without change in cholesterol and glucose concentrations and HOMA-IR. Only GSXO supplementation ameliorates body weight gain, insulin level, and HDL/LDL ratio. GSXO supplementation does not modify cardiac parameters; while supplementation with GSCC decreases heart rate and improves cardiac output. Interestingly, GSCC and GSXO reduce systolic and diastolic blood pressure with a differential time course of action. These effects are associated with substantial decrease of atherosclerotic lesions. These data reinforce the knowledge about the vascular tropism of apple supplementation and underscore their ability to improve both cardiovascular and metabolic alterations in a mouse model of atherosclerosis.

7.
Cell Rep ; 32(8): 108075, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846132

RESUMO

Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.


Assuntos
Fator Natriurético Atrial/metabolismo , Termogênese/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout
8.
Mol Metab ; 42: 101058, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32739449

RESUMO

OBJECTIVE: Most studies routinely use overnight or 6 h of fasting before testing metabolic glucose homeostasis in mice. Other studies used empirically shorter fasting times (<6 h). We attempted to determine the shortest fasting time required for optimal insulin responsiveness while minimizing metabolic stress. METHODS: A course of fasting for up to 24 h (0, 2, 4, 6, 12, and 24 h) was conducted in C57Bl/6J male mice. Body weight, metabolic parameters, and insulin tolerance were measured in each experimental group. The organs were collected at the same time on separate occasions and glycogen and metabolic gene expression were measured in the liver and skeletal muscle. RESULTS: Our data show that blood glucose levels do not significantly change during a 6 h fast, while plasma insulin levels decrease to similar levels between 2 h and 6 h of fasting. During overnight (12 h) and 24 h fasts, a robust decrease in blood glucose and plasma insulin was observed along with a profound depletion in liver glycogen content. Insulin tolerance was comparable between baseline and 6 h fasts while 4 h and 6 h fasts were associated with a greater depletion of liver glycogen than 2 h fasts, impacting the glucose counter-regulatory response. Fasting induced progressive weight loss that was attenuated at thermoneutrality. Fasting longer than 4 h induced major body weight loss (>5%) and significant changes in catabolic gene expression in the liver and skeletal muscle. CONCLUSION: Collectively, these data suggest that 2 h of fasting appears optimal for the assessment of insulin tolerance in mice as this duration minimizes major metabolic stress and weight loss.


Assuntos
Jejum/metabolismo , Teste de Tolerância a Glucose/métodos , Insulina/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Jejum/sangue , Glucose/metabolismo , Glicogênio/metabolismo , Insulina/sangue , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
9.
Nutrients ; 11(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669332

RESUMO

Non-alcoholic steatohepatitis (NASH) is characterized by an excess of lipids and oxidative stress in the liver. Spirulina was reported to possess hypolipemic and antioxidative effects and might counteract NASH development. C57Bl/6J mice were fed a western diet (WD) during 25 weeks with or without spirulina liquid extract (SLE) at 2 different doses (WDS1 and WDS2 groups) in drinking water. Liver histology, inflammation, and oxidative stress were assessed as well as glucose tolerance status, lipid metabolism, and gallbladder bile acid profile. WDS2 gained significantly less weight than WD. Liver weight-to-body weight ratio and plasma alanine aminotransferase were significantly lower in WDS2 mice. A reduced liver fibrosis and NFκBp65 protein expression were measured in the supplemented group as a lower accumulation of superoxide anion, nitric oxide, and thiobarbituric reactive substances. WDS2 mice showed also a preserved glucose tolerance, a strong decrease of plasma cholesterol, and a significant increase of gallbladder ursodeoxycholic acid and ß-muricholic acid. Our findings demonstrate a protective effect of SLE against WD induced NASH that is related to less inflammation and oxidative stress, a preserved glucose tolerance, and less hepatotoxic bile acid profile.


Assuntos
Suplementos Nutricionais , Vesícula Biliar/efeitos dos fármacos , Cirrose Hepática/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/complicações , Spirulina , Ácido Ursodesoxicólico/metabolismo , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicemia/metabolismo , Colesterol/sangue , Ácidos Cólicos/metabolismo , Dieta Ocidental/efeitos adversos , Fibrose , Vesícula Biliar/metabolismo , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Superóxidos/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
10.
Sci Rep ; 8(1): 1097, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348496

RESUMO

Robust associations between low plasma level of natriuretic peptides (NP) and increased risk of type 2 diabetes (T2D) have been recently reported in humans. Adipose tissue (AT) is a known target of NP. However it is unknown whether NP signalling in human AT relates to insulin sensitivity and modulates glucose metabolism. We here show in two European cohorts that the NP receptor guanylyl cyclase-A (GC-A) expression in subcutaneous AT was down-regulated as a function of obesity grade while adipose NP clearance receptor (NPRC) was up-regulated. Adipose GC-A mRNA level was down-regulated in prediabetes and T2D, and negatively correlated with HOMA-IR and fasting blood glucose. We show for the first time that NP promote glucose uptake in a dose-dependent manner. This effect is reduced in adipocytes of obese individuals. NP activate mammalian target of rapamycin complex 1/2 (mTORC1/2) and Akt signalling. These effects were totally abrogated by inhibition of cGMP-dependent protein kinase and mTORC1/2 by rapamycin. We further show that NP treatment favoured glucose oxidation and de novo lipogenesis independently of significant gene regulation. Collectively, our data support a role for NP in blood glucose control and insulin sensitivity by increasing glucose uptake in human adipocytes. This effect is partly blunted in obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , GMP Cíclico/metabolismo , Glucose/metabolismo , Peptídeos Natriuréticos/farmacologia , Tecido Adiposo/metabolismo , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Modelos Biológicos , Obesidade/genética , Obesidade/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
Biochimie ; 124: 84-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26037452

RESUMO

Cardiac natriuretic peptides (NP) have recently emerged as metabolic hormones. Physiological stimulation of cardiac NP release as during exercise may contribute to increase fatty acid mobilization from adipose tissue and their oxidation by skeletal muscles. Clinical studies have shown that although very high plasma NP level characterizes cardiac dysfunction and heart failure, a consistently reduced plasma NP level is observed in metabolic diseases such as obesity and type 2 diabetes. A low circulating NP level also predicts the risk of new onset type 2 diabetes. It is unclear at this stage if the "natriuretic handicap" observed in obesity is causally associated with the incidence of type 2 diabetes. Recent work indicates that NP can activate a thermogenic program in brown and white fat, increase energy expenditure and inhibit food intake. Mouse studies also argue for a key role of NP in the regulation of energy balance and glucose homeostasis. This review will focus on recent human and mouse studies to highlight the metabolic roles of NP and their potential relevance in the context of obesity and type 2 diabetes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Glucose/metabolismo , Peptídeos Natriuréticos/metabolismo , Obesidade/metabolismo , Animais , Humanos , Camundongos
12.
Diabetes ; 64(12): 4033-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253614

RESUMO

Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Intolerância à Glucose/etiologia , Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/fisiopatologia , Receptores do Fator Natriurético Atrial/metabolismo , Transdução de Sinais , Adulto , Animais , Índice de Massa Corporal , Células Cultivadas , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Redutora , Progressão da Doença , Intolerância à Glucose/prevenção & controle , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Obesidade/dietoterapia , Obesidade/metabolismo , Obesidade/patologia , Distribuição Aleatória , Receptores do Fator Natriurético Atrial/agonistas , Receptores do Fator Natriurético Atrial/genética , Organismos Livres de Patógenos Específicos , Redução de Peso
13.
Biochim Biophys Acta ; 1851(9): 1194-201, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25819461

RESUMO

A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Obesidade/metabolismo , Esterol Esterase/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diglicerídeos/metabolismo , Feminino , Regulação da Expressão Gênica , Glicerol/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Ácido Oleico/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Esterol Esterase/genética
14.
Biochim Biophys Acta ; 1818(11): 2892-900, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22842545

RESUMO

Annexin A2 (AnxA2) is a phospholipid binding protein that has been implicated in many membrane-related cellular functions. AnxA2 is able to bind different acidic phospholipids such as phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PI2P). This binding is mediated by Ca(2+)-dependent and Ca(2+)-independent mechanisms. The specific functions of annexin A2 related to these two phospholipids and the molecular mechanisms involved in their interaction remain obscure. Herein we studied the influence of lipid composition on the Ca(2+)-dependency of AnxA2-mediated membrane bridging and on membrane fluidity. Membrane models of ten different lipid compositions and detergent-resistant membranes from two cellular sources were investigated. The results show that the AnxA2-mediated membrane bridging requires 3 to 50 times less calcium for PS-membranes than for PI2P-membranes. Membrane fluidity was measured by the ratiometric fluorescence parameter generalized polarization method with two fluorescent probes. Compared to controls containing low phospholipid ligand, AnxA2 was found to reduce the membrane fluidity of PI2P-membranes twice as much as the PS-membranes in the presence of calcium. On the contrary, at mild acidic pH in the absence of calcium AnxA2 reduces the fluidity of the PS-membranes more than the PI2P-membranes. The presence of cholesterol on the bilayer reduced the AnxA2 capacity to reduce membrane fluidity. The presented data shed light on the specific roles of PI2P, PS and cholesterol present on membranes related to the action of annexin A2 as a membrane bridging molecule during exocytosis and endocytosis events and as a plasma membrane domain phospholipid packing regulator.


Assuntos
Anexina A2/metabolismo , Cálcio/metabolismo , Metabolismo dos Lipídeos , Fluidez de Membrana , Animais , Bovinos , Células Cultivadas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...