Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; : e13040, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961716

RESUMO

Zebrafish (Danio rerio) is now the second most used animal model in biomedical research. As with other vertebrate models, underlying diseases and infections often impact research. Beyond mortality and morbidity, these conditions can compromise research end points by producing nonprotocol induced variation within experiments. Pseudoloma neurophilia, a microsporidium that targets the central nervous system, is the most frequently diagnosed pathogen in zebrafish facilities. The parasite undergoes direct, horizontal transmission within populations, and is also maternally transmitted with spores in ovarian fluid and occasionally within eggs. This transmission explains the wide distribution among research laboratories as new lines are generally introduced as embryos. The infection is chronic, and fish apparently never recover following the initial infection. However, most fish do not exhibit outward clinical signs. Histologically, the parasite occurs as aggregates of spores throughout the midbrain and spinal cord and extends to nerve roots. It often elicits meninxitis, myositis, and myodegeneration when it infects the muscle. There are currently no described therapies for the parasite, thus the infection is best avoided by screening with PCR-based tests and removal of infected fish from a facility. Examples of research impacts include reduced fecundity, behavioral changes, transcriptome alterations, and autofluorescent lesions.

2.
J Wildl Dis ; 60(3): 721-726, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659241

RESUMO

Bighorn sheep (Ovis canadensis) are herbivorous ungulates that live in forage-poor areas of the American west. The trace minerals that herbivores derive from forage are important for immune function. Therefore, identifying trace minerals that affect immune function in bighorn sheep could provide important insights into disease susceptibility and population health in threatened populations. We sought to determine whether trace mineral composition in blood or plasma correlates to survival and determine whether immunologic parameters correlate with any trace minerals that affect survival. We used data collected from 2016 to 2018 as part of a large study on bighorn sheep in southeastern Oregon and northern Nevada, US. We measured the survival of 135 bighorn sheep during the 8-mo monitoring period, including general metrics of immune function and trace mineral levels. We found that animals with higher selenium had improved survival over the monitoring period, with higher peripheral blood mononuclear cell activity (lymphocytes and monocytes) and lower bacterial killing ability in an in vitro assay. This suggests that bighorn sheep may have altered immune function when selenium levels are low, making them more likely to die during the 8-mo monitoring period. Future work should consider whether habitat management strategies that increase selenium intake might improve disease resistance and survival in bighorn sheep in selenium-poor areas.


Assuntos
Selênio , Carneiro da Montanha , Animais , Carneiro da Montanha/sangue , Selênio/sangue , Feminino , Oregon , Masculino , Nevada
3.
Sci Rep ; 13(1): 2567, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782001

RESUMO

Pacific salmon experience prolonged elevation in corticosteroid hormones during important life history events including migration, reproduction, and senescence. These periods of elevated corticosteroids correspond with changes to immunity and energy metabolism; therefore, fish may be particularly vulnerable to mortality at these times. Recent studies found that stress-induced cortisol release associated with microbial community shifts in salmonids, raising the question of how longer-term corticosteroid dynamics that accompany life history transitions affect salmonid microbiomes. In this work, we experimentally evaluated the relationships between gut microbiome composition, chronically elevated corticosteroids, and mortality in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that treatment with slow-release implants of the corticosteroids cortisol or dexamethasone resulted in changes to the gut microbiome. Morbidity was also associated with microbiome composition, suggesting that the gut microbiome reflects individual differences in susceptibility to opportunistic pathogens. Additionally, we analyzed a small number of samples from adult fish at various stages of senescence. Results from these samples suggest that microbiome composition associated with gut integrity, and that the microbial communities of corticosteroid treated juveniles shift in composition toward those of senescent adults. Overall, findings from this work indicate that the gut microbiome correlates with mortality risk during periods of chronic corticosteroid elevation.


Assuntos
Microbioma Gastrointestinal , Oncorhynchus , Animais , Salmão , Hidrocortisona , Morbidade
4.
Exp Suppl ; 114: 285-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544007

RESUMO

There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.


Assuntos
Microsporídios , Microsporidiose , Animais , Aquicultura , Microsporídios/genética , Microsporidiose/genética , Filogenia , Peixe-Zebra
5.
Proc Biol Sci ; 289(1972): 20220079, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35382593

RESUMO

Arctic species are likely to experience rapid shifts in prey availability under climate change, which may alter their exposure to microbes and parasites. Here, we describe fecal bacterial and macroparasite communities and assess correlations with diet trophic level in Pacific walruses harvested during subsistence hunts by members of the Native Villages of Gambell and Savoonga on St Lawrence Island, Alaska. Fecal bacterial communities were dominated by relatively few taxa, mostly belonging to phyla Fusobacteriota and Firmicutes. Members of parasite-associated phyla Nematoda, Acanthocephala and Platyhelminthes were prevalent in our study population. We hypothesized that high versus low prey trophic level (e.g. fish versus bivalves) would result in different gut bacterial and macroparasite communities. We found that bacterial community structure correlated to diet, with nine clades enriched in walruses consuming higher-trophic-level prey. While no parasite compositional differences were found at the phylum level, the cestode genus Diphyllobothrium was more prevalent and abundant in walruses consuming higher-trophic-level prey, probably because fish are the intermediate hosts for this genus. This study suggests that diet is important for structuring both parasite and microbial communities of this culturally and ecologically important species, with potential implications for population health under climate change.


Assuntos
Microbiota , Parasitos , Animais , Regiões Árticas , Dieta , Humanos , Morsas
6.
J Wildl Dis ; 58(2): 298-308, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276000

RESUMO

Measuring inflammatory markers is critical to evaluating both recent infection status and overall human and animal health; however, there are relatively few techniques that do not require specialized equipment or personnel for detecting inflammation among wildlife. Such techniques are useful in that they help determine individual and population-level inflammatory status without the infrastructure and reagents that many more-specific assays require. One such technique, known as the erythrocyte sedimentation rate (ESR), is a measure of how quickly erythrocytes (red blood cells) settle in serum, with a faster rate indicating a general, underlying inflammatory process is occurring. The technique is simple, inexpensive, and can be performed in the field without specialized equipment. We took advantage of a population of African buffalo (Syncerus caffer), well studied from June 2014 to May 2017, to understand the utility of ESR in an important wildlife species. When ESR was compared with other markers of immunity in African buffalo, it correlated to known measures of inflammation. We found that a faster ESR was significantly positively correlated with increased total globulin levels and significantly negatively correlated with increased red blood cell count and albumin levels. We then evaluated if ESR correlated to the incidence of five respiratory pathogens and infection with two tick-borne pathogens in African buffalo. Our results suggest that elevated ESR is associated with the incidence of bovine viral diarrhea virus infection, parainfluenza virus, and Mannheimia haemolytica infections as well as concurrent Anaplasma marginale and Anaplasma centrale coinfection. These findings suggest that ESR is a useful field test as an inflammatory marker in individuals and herds, helping us better monitor overall health status in wild populations.


Assuntos
Búfalos , Carrapatos , Animais , Animais Selvagens , Sedimentação Sanguínea/veterinária , Inflamação/veterinária
7.
mSphere ; 7(1): e0090821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34986317

RESUMO

A novel Enterocytozoon infection was identified in the intestines of sexually mature Chinook salmon. While microsporidian parasites are common across a diverse range of animal hosts, this novel species is remarkable because it demonstrates biological, pathological, and genetic similarity with Enterocytozoon bieneusi, the most common causative agent of microsporidiosis in AIDS patients. There are similarities in the immune and endocrine processes of sexually mature Pacific salmon and immunocompromised humans, suggesting possible common mechanisms of susceptibility in these two highly divergent host species. The discovery of Enterocytozoon schreckii n. sp. contributes to clarifying the phylogenetic relationships within family Enterocytozoonidae. The phylogenetic and morphological features of this species support the redescription of Enterocytozoon to include Enterospora as a junior synonym. Furthermore, the discovery of this novel parasite may have important implications for conservation, as it could be a sentinel of immune suppression, disease, and prespawning mortality in threatened populations of salmonids. IMPORTANCE In this work, we describe a new microsporidian species that infects the enterocytes of Chinook salmon. This novel pathogen is closely related to Enterocytozoon bieneusi, an opportunistic pathogen commonly found in AIDS patients and other severely immunocompromised humans. The discovery of this novel pathogen is of interest because it has only been found in sexually mature Chinook salmon, which have compromised immune systems due to the stresses of migration and maturation and which share similar pathological features with immunocompromised and senescent humans. The discovery of this novel pathogen could lead to new insights regarding how microsporidiosis relates to immunosuppression across animal hosts.


Assuntos
Síndrome da Imunodeficiência Adquirida , Enterocytozoon , Imunossenescência , Microsporídios , Microsporidiose , Animais , Enterócitos/patologia , Enterocytozoon/genética , Humanos , Microsporídios/genética , Microsporidiose/parasitologia , Microsporidiose/veterinária , Filogenia , Salmão/parasitologia
8.
J Hered ; 113(3): 221-234, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34983061

RESUMO

In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Animais Selvagens/genética , Animais Selvagens/microbiologia , Genética Populacional , Microbiota/genética
9.
Front Microbiol ; 12: 648685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177830

RESUMO

OBJECTIVES: Methylmercury metabolism was investigated in Pacific walruses (Odobenus rosmarus divergens) from St. Lawrence Island, Alaska, United States. METHODS: Total mercury and methylmercury concentrations were measured in fecal samples and paired colon samples (n = 16 walruses). Gut microbiota composition and diversity were determined using 16S rRNA gene sequencing. Associations between fecal and colon mercury and the 24 most prevalent gut microbiota taxa were investigated using linear models. RESULTS: In fecal samples, the median values for total mercury, methylmercury, and %methylmercury (of total mercury) were 200 ng/g, 4.7 ng/g, and 2.5%, respectively, while in colon samples, the median values for the same parameters were 28 ng/g, 7.8 ng/g, and 26%, respectively. In fecal samples, methylmercury was negatively correlated with one Bacteroides genus, while members of the Oscillospirales order were positively correlated with both methylmercury and %methylmercury (of total mercury). In colon samples, %methylmercury (of total mercury) was negatively correlated with members of two genera, Romboutsia and Paeniclostridium. CONCLUSIONS: Median %methylmercury (of total mercury) was 10 times higher in the colon compared to the fecal samples, suggesting that methylmercury was able to pass through the colon into systemic circulation. Fecal total mercury and/or methylmercury concentrations in walruses were comparable to some human studies despite differences in seafood consumption rates, suggesting that walruses excreted less mercury. There are no members (at this time) of the Oscillospirales order which are known to contain the genes to methylate mercury, suggesting the source of methylmercury in the gut was from diet and not in vivo methylation.

10.
Nat Commun ; 12(1): 2267, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859184

RESUMO

Studies in humans and laboratory animals link stable gut microbiome "enterotypes" with long-term diet and host health. Understanding how this paradigm manifests in wild herbivores could provide a mechanistic explanation of the relationships between microbiome dynamics, changes in dietary resources, and outcomes for host health. We identify two putative enterotypes in the African buffalo gut microbiome. The enterotype prevalent under resource-abundant dietary regimes, regardless of environmental conditions, has high richness, low between- and within-host beta diversity, and enrichment of genus Ruminococcaceae-UCG-005. The second enterotype, prevalent under restricted dietary conditions, has reduced richness, elevated beta diversity, and enrichment of genus Solibacillus. Population-level gamma diversity is maintained during resource restriction by increased beta diversity between individuals, suggesting a mechanism for population-level microbiome resilience. We identify three pathogens associated with microbiome variation depending on host diet, indicating that nutritional background may impact microbiome-pathogen dynamics. Overall, this study reveals diet-driven enterotype plasticity, illustrates ecological processes that maintain microbiome diversity, and identifies potential associations between diet, enterotype, and disease.


Assuntos
Búfalos/microbiologia , Doenças Transmissíveis/veterinária , Comportamento Alimentar/fisiologia , Microbioma Gastrointestinal/imunologia , Animais , Búfalos/fisiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/microbiologia , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Firmicutes/genética , Firmicutes/isolamento & purificação , Incidência , Metagenômica , Filogenia , Planococáceas/genética , Planococáceas/isolamento & purificação , Prevalência , RNA Ribossômico 16S/genética , África do Sul/epidemiologia , Simbiose/imunologia
11.
PLoS One ; 16(4): e0249521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831062

RESUMO

Supplemental feeding of wildlife is a common practice often undertaken for recreational or management purposes, but it may have unintended consequences for animal health. Understanding cryptic effects of diet supplementation on the gut microbiomes of wild mammals is important to inform conservation and management strategies. Multiple laboratory studies have demonstrated the importance of the gut microbiome for extracting and synthesizing nutrients, modulating host immunity, and many other vital host functions, but these relationships can be disrupted by dietary perturbation. The well-described interplay between diet, the microbiome, and host health in laboratory and human systems highlights the need to understand the consequences of supplemental feeding on the microbiomes of free-ranging animal populations. This study describes changes to the gut microbiomes of wild elk under different supplemental feeding regimes. We demonstrated significant cross-sectional variation between elk at different feeding locations and identified several relatively low-abundance bacterial genera that differed between fed versus unfed groups. In addition, we followed four of these populations through mid-season changes in supplemental feeding regimes and demonstrated a significant shift in microbiome composition in a single population that changed from natural forage to supplementation with alfalfa pellets. Some of the taxonomic shifts in this population mirrored changes associated with ruminal acidosis in domestic livestock. We discerned no significant changes in the population that shifted from natural forage to hay supplementation, or in the populations that changed from one type of hay to another. Our results suggest that supplementation with alfalfa pellets alters the native gut microbiome of elk, with potential implications for population health.


Assuntos
Doenças dos Animais/prevenção & controle , Ração Animal/análise , Bactérias/classificação , Cervos/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Animais , Animais Selvagens , Bactérias/crescimento & desenvolvimento , Cervos/microbiologia
12.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817110

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.IMPORTANCEChlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Fatores de Virulência/genética , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Citocinas/imunologia , Células Epiteliais/microbiologia , Feminino , Células HeLa , Humanos , Macaca , Camundongos , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 10(1): 6582, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313214

RESUMO

Studies in laboratory animals demonstrate important relationships between environment, host traits, and microbiome composition. However, host-microbiome relationships in natural systems are understudied. Here, we investigate metapopulation-scale microbiome variation in a wild mammalian host, the desert bighorn sheep (Ovis canadensis nelsoni). We sought to identify over-represented microbial clades and understand how landscape variables and host traits influence microbiome composition across the host metapopulation. To address these questions, we performed 16S sequencing on fecal DNA samples from thirty-nine bighorn sheep across seven loosely connected populations in the Mojave Desert and assessed relationships between microbiome composition, environmental variation, geographic distribution, and microsatellite-derived host population structure and heterozygosity. We first used a phylogenetically-informed algorithm to identify bacterial clades conserved across the metapopulation. Members of genus Ruminococcaceae, genus Lachnospiraceae, and family Christensenellaceae R7 group were among the clades over-represented across the metapopulation, consistent with their known roles as rumen symbionts in domestic livestock. Additionally, compositional variation among hosts correlated with individual-level geographic and genetic structure, and with population-level differences in genetic heterozygosity. This study identifies microbiome community variation across a mammalian metapopulation, potentially associated with genetic and geographic population structure. Our results imply that microbiome composition may diverge in accordance with landscape-scale environmental and host population characteristics.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Filogenia , Carneiro da Montanha/microbiologia , Animais , Bactérias/classificação , Fezes/microbiologia , Mamíferos/genética , Mamíferos/microbiologia , RNA Ribossômico 16S/genética
14.
PLoS One ; 12(5): e0176830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472180

RESUMO

Serum biochemical parameters can be utilized to evaluate the physiological status of an animal, and relate it to the animal's health. In order to accurately interpret individual animal biochemical results, species-specific reference intervals (RI) must be established. Reference intervals for biochemical parameters differ between species, and physiological differences including reproductive status, nutritional resource availability, disease status, and age affect parameters within the same species. The objectives of this study were to (1) establish RI for biochemical parameters in managed African buffalo (Syncerus caffer), (2) assess the effects of age, sex, pregnancy, and season on serum biochemistry values, and (3) compare serum biochemistry values from a managed herd to a free-ranging buffalo herd and to values previously published for captive (zoo) buffalo. Season profoundly affected all biochemistry parameters, possibly due to changes in nutrition and disease exposure. Age also affected all biochemical parameters except gamma glutamyl transferase and magnesium, consistent with patterns seen in cattle. Sex and reproductive status had no detectable effects on the parameters that were measured. The biochemical profiles of managed buffalo were distinct from those observed in the free-ranging herd and captive buffalo. Biochemical differences between buffalo from captive, managed, and free-ranging populations may be related to nutritional restriction or lack of predation in the context of management or captivity. The reference intervals provided in this study, in addition to the seasonal and age-related patterns observed, provide a foundation for health investigations that may inform management strategies in this ecologically and economically important species.


Assuntos
Fatores Etários , Búfalos/sangue , Estações do Ano , Fatores Sexuais , África , Animais , Feminino , Masculino , Gravidez , Valores de Referência
15.
Pathog Dis ; 75(3)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369275

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen characterized by a unique biphasic developmental cycle that alternates between infectious and non-infectious organisms. Chlamydial ChxR is a transcriptional activator that has been implicated in the regulation of the development cycle. We used a reverse genetics approach to generate three chxR null mutants. All three mutants grew normally in cultured mammalian cells. Whole genome sequencing identified SNPs in other genes; however, none of the mutated genes were common to all three ChxR null mutants arguing against a genetic compensatory mechanism that would explain the non-essential in vitro growth phenotype. Comparative proteomics identified five proteins, CT005, CT214, CT565, CT694 and CT695, that were significantly downregulated in all ChxR null mutants. This group includes established inclusion membrane and type III secreted proteins. ChxR transcriptional regulation of these genes was confirmed by qRT-PCR. Importantly, while ChxR null mutants exhibited no growth deficiencies in in vitro, they did show significant differences in in vivo growth using a mouse genital tract model. Collectively, our findings demonstrated that ChxR is a transcriptional activator that regulates the expression of virulence genes whose functions are restricted to in vivo infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Alelos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Chlamydia trachomatis/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Genoma Bacteriano , Humanos , Camundongos , Mutação , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...