Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1797(9): 1665-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20513348

RESUMO

Recently, Euro et al. [Biochem. 47, 3185 (2008) ] have reported titration data for seven of nine FeS redox centers of complex I from Escherichiacoli. There is a significant uncertainty in the assignment of the titration data. Four of the titration curves were assigned to N1a, N1b, N6b, and N2 centers; one curve either to N3 or N7; one more either to N4 or N5; and the last one denoted Nx could not be assigned at all. In addition, the assignment of the titration data to the N6b/N6a pair is also uncertain. In this paper, using our calculated interaction energies [Couch et al. BBA 1787, 1266 (2009)], we perform statistical analysis of these data, considering a variety of possible assignments, find the best fit, and determine the intrinsic redox potentials of the centers. The intrinsic potentials could be determined with an uncertainty of less than +/-10 mV at a 95% confidence level for best fit assignments. We also find that the best agreement between theoretical and experimental titration curves is obtained with the N6b-N2 interaction equal to 71+/-14 or 96+/-26 mV depending on the N6b/N6a titration data assignment, which is stronger than was expected and may indicate a close distance of the N2 center to the membrane surface.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas Ferro-Enxofre/química , Interpretação Estatística de Dados , Oxirredução
2.
Biochim Biophys Acta ; 1787(10): 1266-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19445896

RESUMO

Respiratory complex I couples the transfer of electrons from NADH to ubiquinone and the translocation of protons across the mitochondrial membrane. A detailed understanding of the midpoint reduction potentials (E(m)) of each redox center and the factors which influence those potentials are critical in the elucidation of the mechanism of electron transfer in this enzyme. We present accurate electrostatic interaction energies for the iron-sulfur (FeS) clusters of complex I to facilitate the development of models and the interpretation of experiments in connection to electron transfer (ET) in this enzyme. To calculate redox titration curves for the FeS clusters it is necessary to include interactions between clusters, which in turn can be used to refine E(m) values and validate spectroscopic assignments of each cluster. Calculated titration curves for clusters N4, N5, and N6a are discussed. Furthermore, we present some initial findings on the electrostatics of the redox centers of complex I under the influence of externally applied membrane potentials. A means of determining the location of the FeS cofactors within the holo-complex based on electrostatic arguments is proposed. A simple electrostatic model of the protein/membrane system is examined to illustrate the viability of our hypothesis.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Eletricidade Estática , Thermus thermophilus/metabolismo , Complexo I de Transporte de Elétrons/química , Holoenzimas/metabolismo , Oxirredução , Conformação Proteica , Termodinâmica , Titulometria
3.
J Phys Chem B ; 110(7): 3410-9, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16494355

RESUMO

The structural characteristics of alpha-helices in poly-alanine-based peptides have been investigated via molecular dynamics simulation with the goal of understanding the basic features of peptide simulations within the context of a model system, classical molecular dynamics with generalized Born (GB) solvation, and to shed insight into the formation and stabilization of alpha-helices in short peptides. The effects of peptide length, terminal charges, proline substitution, and temperature on the alpha-helical secondary structure have been studied. The simulations have shown that distinct secondary structure begins to develop in peptides with lengths approaching 10 residues while ambiguous structures occur in shorter peptides. The helical content of peptides with lengths > or =10 amino acids is observed to be nearly constant up to (Ala)(40). Interestingly, terminal charges and proline in the second position from the N-terminus alter the secondary structure locally with little effect on the overall alpha-helical content of the peptide. The free energy profile of helix formation was also investigated. A large increase in free energy accompanying the formation of helices with more than two consecutive hydrogen bonds in the (i, i + 4) pattern was observed while the free energy increases linearly with additional hydrogen bonds. Values for the change in enthalpy and entropy of helix nucleation and propagation are reported. Additionally the results obtained from the GB model are compared to explicit solvent simulations of two synthetic alanine-based peptides.


Assuntos
Físico-Química/métodos , Peptídeos/química , Entropia , Temperatura Alta , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Probabilidade , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes , Termodinâmica
4.
J Phys Chem A ; 109(19): 4216-20, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16833749

RESUMO

High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA