Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
HLA ; 103(1): e15252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37848366

RESUMO

T cell therapy strategies, from allogeneic stem cell transplantation toward genetically-modified T cells infusion, develop powerful anti-tumor effects but are often accompanied by side effects and their efficacy remains sometimes to be improved. It therefore appears important to provide a flexible and easily reversible gene expression regulation system to control T cells activity. We developed a gene expression regulation technology that exploits the physiological GCN2-ATF4 pathway's ability to induce gene expression in T cells in response to one essential amino acid deficiency. We first demonstrated the functionality of NUTRIREG in human T cells by transient expression of reporter genes. We then validated that NUTRIREG can be used in human T cells to transiently express a therapeutic gene such as IL-10. Overall, our results represent a solid basis for the promising use of NUTRIREG to regulate transgene expression in human T cells in a reversible way, and more generally for numerous preventive or curative therapeutic possibilities in cellular immunotherapy strategies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante Homólogo , Aminoácidos , Alelos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T , Transgenes
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806203

RESUMO

Chronic treatment with acetaminophen (APAP) induces cysteine (Cys) and glutathione (GSH) deficiency which leads to adverse metabolic effects including muscle atrophy. Mammalian cells respond to essential amino acid deprivation through the phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Phosphorylated eIF2α leads to the recruitment of activating transcription factor 4 (ATF4) to specific CCAAT/enhancer-binding protein-ATF response element (CARE) located in the promoters of target genes. Our purpose was to study the activation of the eIF2α-ATF4 pathway in response to APAP-induced Cys deficiency, as well as the potential contribution of the eIF2α kinase GCN2 and the effect of dietary supplementation with Cys. Our results showed that chronic treatment with APAP activated both GCN2 and PERK eIF2α kinases and downstream target genes in the liver. Activation of the eIF2α-ATF4 pathway in skeletal muscle was accompanied by muscle atrophy even in the absence of GCN2. The dietary supplementation with cysteine reversed APAP-induced decreases in plasma-free Cys, liver GSH, muscle mass, and muscle GSH. Our new findings demonstrate that dietary Cys supplementation also reversed the APAP-induced activation of GCN2 and PERK and downstream ATF4-target genes in the liver.


Assuntos
Fator 4 Ativador da Transcrição , Fator de Iniciação 2 em Eucariotos , Acetaminofen/efeitos adversos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Cisteína/metabolismo , Suplementos Nutricionais , Fator de Iniciação 2 em Eucariotos/metabolismo , Glutationa/metabolismo , Mamíferos/metabolismo , Atrofia Muscular/induzido quimicamente , Fosforilação , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409073

RESUMO

Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.


Assuntos
Atletas , Resistência Física , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Resistência Física/fisiologia
4.
J Gerontol A Biol Sci Med Sci ; 77(1): 47-54, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34406381

RESUMO

The aim of the study was to evaluate the association between physical activity, knee extensors (KE) performance (ie, isometric strength and fatigability), and biological parameters (ie, muscle structural, microvascular, and metabolic properties) in healthy very old men and women. Thirty very old adults (82 ± 1 years, 15 women) performed an isometric Quadriceps Intermittent Fatigue (QIF) test for the assessment of KE maximal force, total work (index of absolute performance), and fatigability. Muscle biopsies from the vastus lateralis muscle were collected to assess muscle fibers type and morphology, microvasculature, and enzymes activity. Correlation analyses were used to investigate the relationships between physical activity (steps/day, actimetry), KE performance, and biological data for each sex separately. Men, compared to women, showed greater total work at the QIF test (44 497 ± 8 629 Ns vs 26 946 ± 4 707 Ns; p < .001). Steps per day were correlated with total work only for women (r = 0.73, p = .011). In men, steps per day were correlated with the percentage (r = 0.57, p = .033), shape factor (r = 0.75, p = .002), and capillary tortuosity of type IIX fibers (r = 0.59, p = .035). No other relevant correlations were observed for men or women between steps per day and biological parameters. Physical activity level was positively associated with the capacity of very old women to perform a fatiguing test, but not maximal force production capacity of the KE. Physical activity of very old men was not correlated with muscle performance. We suggest that very old women could be at higher risk of autonomy loss and increasing the steps per day count could provide a sufficient stimulus for adaptations in less active women.


Assuntos
Fadiga Muscular , Músculo Quadríceps , Exercício Físico/fisiologia , Feminino , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia
5.
Biol Reprod ; 106(3): 463-476, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34875016

RESUMO

Infertility represents a growing burden worldwide, with one in seven couples presenting difficulties conceiving. Among these, 10-15% of the men have idiopathic infertility that does not correlate with any defect in the classical sperm parameters measured. In the present study, we used a mouse model to investigate the effects of maternal undernutrition on fertility in male progeny. Our results indicate that mothers fed on a low-protein diet during gestation and lactation produce male offspring with normal sperm morphology, concentration, and motility but exhibiting an overall decrease of fertility when they reach adulthood. Particularly, in contrast to control, sperm from these offspring show a remarkable lower capacity to fertilize oocytes when copulation occurs early in the estrus cycle relative to ovulation, due to an altered sperm capacitation. Our data demonstrate for the first time that maternal nutritional stress can have long-term consequences on the reproductive health of male progeny by affecting sperm physiology, especially capacitation, with no observable impact on spermatogenesis and classical quantitative and qualitative sperm parameters. Moreover, our experimental model could be of major interest to study, explain, and ultimately treat certain categories of infertilities.


Assuntos
Infertilidade Masculina , Desnutrição , Adulto , Animais , Feminino , Fertilidade , Humanos , Infertilidade Masculina/etiologia , Lactação , Masculino , Desnutrição/complicações , Camundongos , Gravidez , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
6.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614063

RESUMO

Activating transcription factor 4 (ATF4) is involved in muscle atrophy through the overexpression of some atrogenes. However, it also controls the transcription of genes involved in muscle homeostasis maintenance. Here, we explored the effect of ATF4 activation by the pharmacological molecule halofuginone during hindlimb suspension (HS)-induced muscle atrophy. Firstly, we reported that periodic activation of ATF4-regulated atrogenes (Gadd45a, Cdkn1a, and Eif4ebp1) by halofuginone was not associated with muscle atrophy in healthy mice. Secondly, halofuginone-treated mice even showed reduced atrophy during HS, although the induction of the ATF4 pathway was identical to that in untreated HS mice. We further showed that halofuginone inhibited transforming growth factor-ß (TGF-ß) signalling, while promoting bone morphogenetic protein (BMP) signalling in healthy mice and slightly preserved protein synthesis during HS. Finally, ATF4-regulated atrogenes were also induced in the atrophy-resistant muscles of hibernating brown bears, in which we previously also reported concurrent TGF-ß inhibition and BMP activation. Overall, we show that ATF4-induced atrogenes can be uncoupled from muscle atrophy. In addition, our data also indicate that halofuginone can control the TGF-ß/BMP balance towards muscle mass maintenance. Whether halofuginone-induced BMP signalling can counteract the effect of ATF4-induced atrogenes needs to be further investigated and may open a new avenue to fight muscle atrophy. Finally, our study opens the way for further studies to identify well-tolerated chemical compounds in humans that are able to fine-tune the TGF-ß/BMP balance and could be used to preserve muscle mass during catabolic situations.


Assuntos
Fator 4 Ativador da Transcrição , Atrofia Muscular , Ursidae , Animais , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Hibernação
7.
Nutrients ; 13(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959754

RESUMO

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Assuntos
Tecido Adiposo/metabolismo , Fibras na Dieta/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Hipernutrição/metabolismo , Aminoácidos/metabolismo , Animais , Pão , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Feminino , Alimentos Fermentados , Glucose/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Suínos , Porco Miniatura , Ureia/metabolismo
8.
Cells ; 10(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34440743

RESUMO

The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1-UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.


Assuntos
Actinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Linhagem Celular , Dexametasona/farmacologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Nutrients ; 13(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202561

RESUMO

Chronic Mg2+ deficiency is the underlying cause of a broad range of health dysfunctions. As 25% of body Mg2+ is located in the skeletal muscle, Mg2+ transport and homeostasis systems (MgTHs) in the muscle are critical for whole-body Mg2+ homeostasis. In the present study, we assessed whether Mg2+ deficiency alters muscle fiber characteristics and major pathways regulating muscle physiology. C57BL/6J mice received either a control, mildly, or severely Mg2+-deficient diet (0.1%; 0.01%; and 0.003% Mg2+ wt/wt, respectively) for 14 days. Mg2+ deficiency slightly decreased body weight gain and muscle Mg2+ concentrations but was not associated with detectable variations in gastrocnemius muscle weight, fiber morphometry, and capillarization. Nonetheless, muscles exhibited decreased expression of several MgTHs (MagT1, CNNM2, CNNM4, and TRPM6). Moreover, TaqMan low-density array (TLDA) analyses further revealed that, before the emergence of major muscle dysfunctions, even a mild Mg2+ deficiency was sufficient to alter the expression of genes critical for muscle physiology, including energy metabolism, muscle regeneration, proteostasis, mitochondrial dynamics, and excitation-contraction coupling.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Homeostase/genética , Deficiência de Magnésio/genética , Magnésio/metabolismo , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais/genética
10.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921590

RESUMO

(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and ß-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.


Assuntos
Síndrome Metabólica/metabolismo , Proteômica/métodos , Animais , Glicólise/genética , Glicólise/fisiologia , Humanos , Síndrome Metabólica/genética , Músculo Esquelético/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Transcriptoma/genética
11.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456262

RESUMO

Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Animais , Masculino , Atividade Motora , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Ratos Wistar , Restrição Física/efeitos adversos
12.
Artigo em Inglês | MEDLINE | ID: mdl-31747539

RESUMO

Rheumatoid arthritis (RA) has a negative impact on muscle mass, and reduces patient's mobility and autonomy. Furthermore, RA is associated with metabolic comorbidities, notably in lipid homeostasis by unknown mechanisms. To understand the links between the loss in muscle mass and the metabolic abnormalities, arthritis was induced in male Sprague Dawley rats (n = 11) using the collagen-induced arthritis model. Rats immunized with bovine type II collagen were compared to a control group of animals (n = 11) injected with acetic acid and complete Freund's adjuvant. The clinical severity of the ensuing arthritis was evaluated weekly by a semi-quantitative score. Skeletal muscles from the hind limb were used for the histological analysis and exploration of mitochondrial activity, lipid accumulation, metabolism and regenerative capacities. A significant atrophy in tibialis anterior muscle fibers was observed in the arthritic rats despite a non-significant decrease in the weight of the muscles. Despite moderate inflammation, accumulation of triglycerides (P < 0.05), reduced mitochondrial DNA copy number (P < 0.05) and non-significant dysfunction in mitochondrial cytochrome c oxidase activity were found in the gastrocnemius muscle. Concomitantly, our results suggested an activation of the muscle specific E3 ubiquitin ligases MuRF-1 and MAFbx. Finally, the adipose tissue from the arthritic rats exhibited decreased PPARγ mRNA suggesting reduced adipogenic capacities. In conclusion, the reduced adipose tissue adipogenic capacity and skeletal muscle mitochondrial capacity are probably involved in the activation of protein catabolism, inhibition of myogenesis, accumulation of lipids and fiber atrophy in the skeletal muscle during RA.


Assuntos
Artrite Experimental/complicações , Artrite Reumatoide/complicações , Mitocôndrias/patologia , Atrofia Muscular/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/imunologia , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Humanos , Masculino , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
13.
Blood ; 134(25): 2233-2241, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742587

RESUMO

Sickle cell disease (SCD) is a genetic hemoglobinopathy leading to 2 major clinical manifestations: severe chronic hemolytic anemia and iterative vaso-occlusive crises. SCD is also accompanied by profound muscle microvascular remodeling. The beneficial effects of endurance training on microvasculature are widely known. The aim of this study was to evaluate the effects of an endurance training program on microvasculature of skeletal muscle in SCD patients. A biopsy of the vastus lateralis muscle and submaximal incremental exercise was performed before and after the training period. Of the 40 randomized SCD patients, complete data sets from 32 patients were obtained. The training group (n = 15) followed a personalized moderate-intensity endurance training program, while the nontraining (n = 17) group maintained a normal lifestyle. Training consisted of three 40-minute cycle ergometer exercise sessions per week for 8 weeks. Histological analysis highlighted microvascular benefits in the training SCD patients compared with nontraining patients, including increases in capillary density (P = .003), number of capillaries around a fiber (P = .015), and functional exchange surface (P < .0001). Conversely, no significant between-group difference was found in the morphology of capillaries. Indexes of physical ability also improved in the training patients. The moderate-intensity endurance exercise training program improved the muscle capillary network and partly reversed the microvascular defects commonly observed in skeletal muscle of SCD patients. This trial was registered at www.clinicaltrials.gov as #NCT02571088.


Assuntos
Anemia Falciforme , Treino Aeróbico , Terapia por Exercício , Microvasos/fisiopatologia , Músculo Esquelético , Adulto , Anemia Falciforme/fisiopatologia , Anemia Falciforme/terapia , Feminino , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia
14.
J Nutr Biochem ; 65: 72-82, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30654277

RESUMO

Obesity induced by overfeeding ultimately can lead to nonalcoholic fatty liver disease, whereas dietary fiber consumption is known to have a beneficial effect. We aimed to determine if a supplementation of a mix of fibers (inulin, resistant starch and pectin) could limit or alleviate overfeeding-induced metabolic perturbations. Twenty female minipigs were fed with a control diet (C) or an enriched fat/sucrose diet supplemented (O + F) or not (O) with fibers. Between 0 and 56 days of overfeeding, insulin (+88%), HOMA (+102%), cholesterol (+45%) and lactate (+63%) were increased, without any beneficial effect of fibers supplementation. However, fibers supplementation limited body weight gain (vs. O, -15% at D56) and the accumulation of hepatic lipids droplets induced by overfeeding. This could be explained by a decreased lipids transport potential (-50% FABP1 mRNA, O + F vs. O) inducing a down-regulation of regulatory elements of lipids metabolism / lipogenesis (-36% SREBP1c mRNA, O + F vs. O) but not to an increased oxidation (O + F not different from O and C for proteins and mRNA measured). Glucose metabolism was also differentially regulated by fibers supplementation, with an increased net hepatic release of glucose in the fasted state (diet × time effect, P<.05 at D56) that can be explained partially by a possible increased glycogen synthesis in the fed state (+82% GYS2 protein, O + F vs. O, P=.09). The direct role of short chain fatty acids on gluconeogenesis stimulation is questioned, with probably a short-term impact (D14) but no effect on a long-term (D56) basis.


Assuntos
Fibras na Dieta/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hipernutrição/dietoterapia , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação , Regulação da Expressão Gênica/efeitos dos fármacos , Inulina/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Hipernutrição/etiologia , Pectinas/farmacologia , Proteínas/genética , Proteínas/metabolismo , Sacarose/efeitos adversos , Suínos , Porco Miniatura
15.
Magnes Res ; 32(3): 72-82, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32162608

RESUMO

Magnesium (Mg2+) is critical for a number of biological processes and 25% body Mg2+ is located in the skeletal muscle. Mg2+ transport and homeostasis systems (MgTHs) regulate intracellular Mg2+ concentration and muscle MgTHs are thus related to whole body Mg2+ homeostasis. Nonetheless, few studies have investigated the regulation of muscle MgTHs under (patho)physiological conditions. Herein, we assessed the relationship between the expression of MgTHs genes (Trpm6, Trpm7, Magt1, Mrs2, Cnnm1-4, Slc41a1-3) and relevant pathways in human sarcopenia, which is one of the most dramatic physiologic changes affecting the human body. Transcriptomic data were compared between young adult (YO, 22 y, n = 11) and old (EL, 73 y, n = 13) men from the PROOF cohort. MgTH mRNA levels did not change with aging, with the exception of a slight decrease for Slc41a3. Nevertheless, interindividual variations of mRNA levels revealed strong correlations between MgTHs in the YO group, while few were maintained in the EL muscle. Moreover, in the YO muscle, different clusters of MgTH mRNAs strongly correlated with divers physiological (BMI, blood pressure) and muscle characteristics (intramyocellular droplets, capillarization); however, most correlations changed or disappeared in the EL muscle. Further investigations of the whole transcriptome identified several sets of mRNAs correlated with defined MgTHs. There again was a sharp difference between YO and EL muscles, as the number of mRNAs correlated with MgTHs strongly decreased with aging. Gene ontology analyses of these sets of correlated mRNAs revealed 6 biological processes common to YO and EL, 3 specific to the YO (RNA processing, translation, respiration), and 2 (regulation of catabolic process, Wnt signaling) to the EL muscle. Overall, these observations lead to questions about potential resilience to muscle Mg2+ homeostasis in the elderly.


Assuntos
Homeostase/genética , Magnésio/metabolismo , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Idoso , Estudos de Coortes , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Adulto Jovem
16.
J Gerontol A Biol Sci Med Sci ; 74(5): 608-615, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30137216

RESUMO

Characterizations of the multiple mechanisms determining biological aging are required to better understand the etiology and identify early biomarkers of sarcopenia. Oxylipins refer to a large family of signaling lipids involved in the regulation of various biological processes that become dysregulated during aging. To investigate whether comprehensive oxylipin profiling could provide an integrated and fine characterization of the early phases of sarcopenia, we performed a quantitative targeted metabolomics of oxylipins in plasma of 81-year-old subjects from the PROOF cohort with decreased (n = 12), stable (n = 16), or increased appendicular muscle mass (n = 14). Multivariate and univariate analyses identified significant and concordant changes of oxylipin profiles according to the muscle status. Of note, 90% of the most discriminant oxylipins were derived from EPA and DHA and were increased in the sarcopenic subjects. The oxylipins signatures of sarcopenic subjects revealed subtle activation of inflammatory resolution pathways, coagulation processes, and oxidative stress as well as the inhibition of angiogenesis. Heat maps highlighted relationships between oxylipins and the cardiometabolic health parameters which were mainly lost in sarcopenic subjects. This exploratory study supports that targeted metabolomics of oxylipins could provide relevant and subtle characterization of early disturbances associated with muscle loss during aging.


Assuntos
Envelhecimento , Oxilipinas/sangue , Sarcopenia/sangue , Absorciometria de Fóton , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos
18.
J Cachexia Sarcopenia Muscle ; 9(5): 929-946, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29989354

RESUMO

BACKGROUND: Glucocorticoids (GC) play a major role in muscle atrophy. As skeletal muscle is a secretory organ, characterization of the muscle secretome elicited by muscle atrophy should allow to better understand the cellular mechanisms and to identify circulating biomarkers of this condition. Our project aimed to identify the changes in the muscle secretome associated with GC-induced muscle atrophy and susceptible to translate into circulation. METHODS: We have identified the GC-induced changes in the secretome of C2 C12 muscle cells by proteomic analysis, and then, we have determined how these changes translate into the circulation of mice or human subjects exposed to high concentrations of GC. RESULTS: This approach led us to identify Serpina3n as one of the most markedly secreted protein in response to GC. Our original in vitro results were confirmed in vivo by an increased expression of Serpina3n in skeletal muscle (3.9-fold; P < 0.01) and in the serum (two-fold; P < 0.01) of mice treated with GC. We also observed increased levels of the human orthologue Serpina3 in the serum of Cushing's syndrome patients compared with healthy controls matched for age and sex (n = 9/group, 2.5-fold; P < 0.01). An increase of Serpina3n was also demonstrated in muscle atrophy models mediated by GC such as cancer cachexia (four-fold; P < 0.01), sepsis (12.5-fold; P < 0.001), or diabetes (two-fold; P < 0.01). In contrast, levels of Serpina3n both in skeletal muscle and in the circulation were reduced in several models of muscle hypertrophy induced by myostatin inhibition (P < 0.01). Furthermore, a cluster of data suggests that the regulation of muscle Serpina3n involves mTOR, an essential determinant of the muscle cell size. CONCLUSIONS: Taken together, these data suggest that Serpina3n may represent a circulating biomarker of muscle atrophy associated to GC and, broadly, a reflection of dynamic changes in muscle mass.


Assuntos
Glucocorticoides/efeitos adversos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Serpinas/metabolismo , Animais , Estudos de Casos e Controles , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Síndrome de Cushing/complicações , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Expressão Gênica , Humanos , Masculino , Camundongos , Atrofia Muscular/patologia , Mioblastos , Proteoma , Proteômica/métodos , Serpinas/sangue , Espectrometria de Massas em Tandem
19.
Exp Gerontol ; 76: 80-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826452

RESUMO

Aging strongly affects the skeletal muscle and is associated with microvascular dysfunctions. Age is also a primary risk factor for the metabolic syndrome, which is a cluster of metabolic and cardiovascular symptoms. Among the metabolic syndrome components, hypertension is the most prevalent in elderly subjects and has a central role in vascular alterations. Despite critical clinical outcomes, the effects of hypertension and metabolic syndrome on skeletal muscle capillarization have poorly been investigated during aging. In the present study, muscle biopsies from normotensive young (YO) and elderly (ELc) men, and elderly men with hypertension (EL-HT) or metabolic syndrome (EL-MS) were assessed for the number of capillaries around a fiber (CAF), capillary-to-fiber perimeter exchange (CFPE), length of contact to perimeter of fiber ratio (LC/PF), capillary tortuosity, and for extracellular matrix (ECM) embedding capillaries. As capillarization and muscle mitochondrial oxidative capacity may be associated, we also investigated cytochrome c oxidase (COX) content. Our findings indicate that capillarization and COX did not change between normotensive adult and old individuals. They further reveal that hypertension in elderly men is associated with reduced CAF (ELc: 5.2 ± 0.4, EL-HT: 4.1 ± 0.2, P<0.02 for type I fibers; ELc: 4.1 ± 0.2, EL-HT: 3.1 ± 0.3, P<0.03 for type IIA fibers), CFPE (ELc: 7.9 ± 0.7, EL-HT: 6.4 ± 0.4 capillaries/1000 µm, P<0.03 for type I fibers; ELc: 6.5 ± 0.4, EL-HT: 5.2 ± 0.4 capillaries/1000 µm, P<0.03 for type IIA fibers), LC/PF (ELc: 23.3 ± 1.2, EL-HT: 17.8 ± 0.6%, P<0.01 for type I fibers; ELc: 19.8 ± 1.1, EL-HT: 15.6 ± 0.8%, P<0.01 for type IIA fibers) and capillary tortuosity, and with ECM endomysium fibrosis. Capillary rarefaction also correlated with lower COX content in the old hypertensive muscle. No further modification occurred with metabolic syndrome in elderly men. Collectively, our results suggest that hypertension plays a central role in muscle capillarization during aging, and that the other components of metabolic syndrome do not make major additional changes in the aged skeletal muscle capillary network.


Assuntos
Envelhecimento , Capilares/fisiopatologia , Hipertensão/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Fatores Etários , Idoso , Envelhecimento/patologia , Biópsia , Capilares/patologia , Complexo IV da Cadeia de Transporte de Elétrons/análise , Matriz Extracelular/patologia , Humanos , Hipertensão/diagnóstico , Hipertensão/patologia , Extremidade Inferior , Masculino , Fibras Musculares Esqueléticas/patologia , Fatores Sexuais , Adulto Jovem
20.
Proteomes ; 4(4)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28248242

RESUMO

Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...