Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794575

RESUMO

Polypropylene-based aerogels with high surface area have been developed for the first time. By chemical crosslinking of polypropylene with oligomeric capped-end amino compounds, followed by dissolution, thermally induced phase separation, and the supercritical CO2 drying process or freeze-drying method, the aerogels exhibit high specific surface areas up to 200 m2/g. Moreover, the silica-cage multi-amino compound was utilized in a similar vein for forming hybrid polypropylene aerogels. According to the SEM, the developed polypropylene-based aerogels exhibit highly porous morphology with micro-nanoscale structural features that can be controlled by processing conditions. Our simple and inexpensive synthetic strategy results in a low-cost, chemically resistant, and highly porous material that can be tailored according to end-use applications.

2.
Langmuir ; 39(47): 16760-16775, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37955990

RESUMO

The inherent disadvantages of traditional nonflexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues, different techniques have been used to incorporate the flexibility in aerogel materials; hence, the term "flexible aerogels" was introduced. In the case of introducing flexibility, the organic part is induced with the inorganic part (flexible hybrid aerogels). Additionally, some more modern research is also available in the fabrication of hybrid flexible aerogels (based on organic-organic), the combination of two organic polymers. Moreover, a new type (single-component flexible aerogels) are quite a new category composed of only single materials; this category is very limited, charming to make the flexible aerogels pure from single polymers. The present review is composed of modern techniques and studies available to fabricate hybrid and single-component flexible aerogels. Their synthesis, factors affecting their parameters, and limitations associated with them are explained deeply. Moreover, a comparative analysis of drying methods and their effectiveness in the development of structures are described in detail. The further sections explain their properties and characterization methods. Eventually, their applications in a variety of multifunctional fields are covered. This article will support to introduce the roadmap pointing to a future direction in the production of the single-component flexible aerogel materials and their applications.

3.
Sci Rep ; 13(1): 17383, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833405

RESUMO

Formation of bis-azomethines from hydrazine and heterocyclic aromatic carbaldehydes, namely pyridine-2-carbaldehyde and pyrazine-2-carbaldehyde, is studied using density functional theory. The theoretical investigation is correlated with experimental results obtained by means of NMR spectroscopy. The presence of bis-hemiaminal intermediates is evidenced by NMR spectra while surprisingly stable hemiaminal intermediate was isolated experimentally. Water, methanol and acetic acid were outlined to play a crucial role as active catalysts of elementary steps of the reaction mechanisms. The possible reaction sequences, i.e. addition-dehydration-addition-dehydration or addition-addition-dehydration-dehydration are investigated and discussed. Also, alternative mechanistic path via ionic mechanism was proposed for the formation of hemiaminals.

4.
Org Biomol Chem ; 21(34): 6956-6968, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37581612

RESUMO

The formation of hemiacetals from pyrazine trifluoromethylketone as a model receptor and four simple alcohols was studied by using quantum chemical calculations and NMR spectroscopy. Free energy profiles for four types of mechanistic pathways were calculated and discussed with respect to kinetic and thermodynamic measurements. We show that hemiacetal formation is facilitated by an assisted proton transfer process via a pseudo eight-membered transition state which brings the theory and experiment into close agreement. Also, a newly proposed mechanistic pathway for hemiacetal formation via a five-membered transition state leading to zwitterionic intermediates is discussed. Direct proton transfer in a pseudo four-membered transition state can be ruled out due to the high energy of transition states with respect to other mechanistic pathways. We also show that in the case of hemiacetals, water and alcohol molecules cannot account sufficiently for the H-transfer process via six-membered transition states.

5.
Gels ; 10(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38275842

RESUMO

The inherent disadvantages of traditional non-flexible aerogels, such as high fragility and moisture sensitivity, severely restrict their applications. To address these issues and make the aerogels efficient, especially for advanced medical applications, different techniques have been used to incorporate flexibility in aerogel materials. In recent years, a great boom in flexible aerogels has been observed, which has enabled them to be used in high-tech biomedical applications. The current study comprises a comprehensive review of the preparation techniques of pure polymeric-based hybrid and single-component aerogels and their use in biomedical applications. The biomedical applications of these hybrid aerogels will also be reviewed and discussed, where the flexible polymeric components in the aerogels provide the main contribution. The combination of highly controlled porosity, large internal surfaces, flexibility, and the ability to conform into 3D interconnected structures support versatile properties, which are required for numerous potential medical applications such as tissue engineering; drug delivery reservoir systems; biomedical implants like heart stents, pacemakers, and artificial heart valves; disease diagnosis; and the development of antibacterial materials. The present review also explores the different mechanical, chemical, and physical properties in numerical values, which are most wanted for the fabrication of different materials used in the biomedical fields.

6.
RSC Adv ; 12(4): 2227-2236, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425218

RESUMO

Novel nickel(ii) complexes bearing ( t butyl)bis(diphenylphosphanyl)amine and different halogenido ligands, [Ni(P,P)X2] = [Ni{ t BuN(PPh2)2-κ2P}X2], (X = Cl, Br, I) are prepared, characterized by IR and NMR spectroscopy, mass spectrometry and X-ray crystallography, and tested as catalysts in the Kumada cross-coupling reaction of model substituted iodobenzenes and p-tolylmagnesium bromide. The data obtained together with DFT calculations indicate that these new catalysts operate in the Ni(i)-Ni(iii) mode. The highest catalytic activity and selectivity are exhibited by [Ni(P,P)Cl2], which is most easily reduced by the used Grignard reagent to the Ni(i) state. This process is much more energy demanding in the case of the bromido and iodido complexes, causing the appearance of the induction period. [Ni(P,P)Cl2] is also very active in the cross-couplings of substrates with iodine atoms sterically shielded by ortho substituents. The data obtained are in good accordance with the described positive effect of the increased electron-releasing power of N-substituents R' on the overall catalytic performance of [Ni{R'N(PPh2)2-κ2P}X2] complexes.

7.
Gels ; 7(4)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940324

RESUMO

The term aerogel is used for unique solid-state structures composed of three-dimensional (3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the physicochemical properties and the structural characteristics in macroscale as well as integrate typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors, catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the applications of aerogels and promising results have been achieved and reported. In this thematic issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are presented and discussed in detail. In addition, some other perspectives and recent challenges for the synthesis of high performance and low-cost aerogels and their applications are also summarized.

8.
Polymers (Basel) ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481616

RESUMO

In this paper, we present the use of a disubstituted polyacetylene with high thermal stability and quantum yield as a fluorescence label for the identification, tracing, recycling, and eventually anti-counterfeiting applications of thermoplastics. A new method was developed for the dispersion of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) into polymer blends. For such purposes, four representative commodity plastics were selected, i.e., polypropylene, low-density polyethylene, poly(methyl methacrylate), and polylactide. Polymer recycling was mimicked by two reprocessing cycles of the material, which imparted intensive luminescence to the labelled polymer blends when excited by proper illumination. The concentration of the labelling polymer in the matrices was approximately a few tens ppm by weight. Luminescence was visible to the naked eye and survived the simulated recycling successfully. In addition, luminescence emission maxima were correlated with polymer polarity and glass transition temperature, showing a marked blueshift in luminescence emission maxima with the increase in processing temperature and time. This blueshift results from the dispersion of the labelling polymer into the labelled polymer matrix. During processing, the polyacetylene chains disentangled, thereby suppressing their intermolecular interactions. Moreover, shear forces imposed during viscous polymer melt mixing enforced conformational changes, which shortened the average conjugation length of PTMSDPA chain segments. Combined, these two mechanisms shift the luminescence of the probe from a solid- to a more solution-like state. Thus, PTMSDPA can be used as a luminescent probe for dispersion quality, polymer blend homogeneity, and processing history, in addition to the identification, tracing, and recycling of thermoplastics.

9.
Macromol Rapid Commun ; 38(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28230303

RESUMO

The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example.


Assuntos
Aldeídos/química , Benzaldeídos/química , Polimerização , Poli-Inos/química , Catálise , Modelos Químicos , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Poli-Inos/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...