Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 219: 500-509, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27521787

RESUMO

In this study, the performance of immobilised laccase (Trametes versicolor) was investigated in combination with the mediator syringaldehyde (SYR) in removing a mixture of 38 antibiotics in an enzymatic membrane reactor (EMR). Antibiotics were spiked in osmosed water at concentrations of 10µg·L(-1) each. Laccase without mediator did not reduce the load of antibiotics significantly. The addition of SYR enhanced the removal: out of the 38 antibiotics, 32 were degraded by >50% after 24h. In addition to chemical analysis, the samples' toxicity was evaluated in two bioassays (a growth inhibition assay and the Microtox assay). Here, the addition of SYR resulted in a time-dependent increase of toxicity in both bioassays. In cooperation with SYR, laccase effectively removes a broad range of antibiotics. However, this enhanced degradation induces unspecific toxicity. If this issue is resolved, enzymatic treatment may be a valuable addition to existing water treatment technologies.


Assuntos
Antibacterianos , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Reatores Biológicos/microbiologia , Trametes/enzimologia , Águas Residuárias/análise , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Chemosphere ; 119: 90-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24972175

RESUMO

This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap - high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the "dehydration ERY-A", with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases.


Assuntos
Antibacterianos/química , Eritromicina/química , Esterases/química , Lacase/química , Tetraciclina/química , Poluentes Químicos da Água/química , Antibacterianos/análise , Cromatografia Líquida/métodos , Eritromicina/análise , Espectrometria de Massas/métodos , Tetraciclina/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-24291716

RESUMO

A novel actinomycete strain, Streptomyces anulatus S37, has been isolated from the rhizosphere of healthy Moroccan Vitis vinifera on the basis on its ability to promote grapevine growth and to induce natural defences against various phytopathogens. In the present work, the main bioactive metabolites produced by S. anulatus S37 were isolated. A crude n-BuOH extract of the S37 fermentation broth was firstly partitioned in a biphasic solvent system composed of n-heptane, methanol, and water (5:1.5:3.5, v/v). The most active organic fraction (1.1g) as revealed by TLC-bioautography was subsequently separated by a two-step centrifugal partition chromatography procedure. The first separation was performed in the ascending mode at 6mL/min with the biphasic solvent system n-heptane, ethyl acetate, methanol and water (2:1:2:1, v/v), to finally recover 40mg of a pure compound identified as streptochlorin by NMR spectroscopy. In a second separation, the solvent system n-heptane, acetonitrile, and water (5:5:4, v/v) was used in the ascending mode at 3mL/min to purify 135mg of nigericin and 53mg of piericidin A1. Assays performed with the three compounds have confirmed their inhibitory impact on the growth of Botryris cinerea in dual confrontation and also on V. vinifera L. plantlets.


Assuntos
Antibacterianos/isolamento & purificação , Centrifugação/métodos , Cromatografia Líquida/métodos , Streptomyces/química , Antibacterianos/química , Antibacterianos/farmacologia , Botrytis/efeitos dos fármacos , Rizosfera , Vitis/microbiologia
4.
Appl Microbiol Biotechnol ; 97(10): 4639-49, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22805783

RESUMO

Azospirillum are prominent plant growth-promoting rhizobacteria (PGPR) extensively used as phytostimulatory crop inoculants, but only few studies are dealing with Azospirillum-containing mixed inocula involving more than two microorganisms. We compared here three prominent Azospirillum strains as part of three-component consortia including also the PGPR Pseudomonas fluorescens F113 and a mycorrhizal inoculant mix composed of three Glomus strains. Inoculant colonization of maize was assessed by quantitative PCR, transcription of auxin synthesis gene ipdC (involved in phytostimulation) in Azospirillum by RT-PCR, and effects on maize by secondary metabolic profiling and shoot biomass measurements. Results showed that phytostimulation by all the three-component consortia was comparable, despite contrasted survival of the Azospirillum strains and different secondary metabolic responses of maize to inoculation. Unexpectedly, the presence of Azospirillum in the inoculum resulted in lower phytostimulation in comparison with the Pseudomonas-Glomus two-component consortium, but this effect was transient. Azospirillum's ipdC gene was transcribed in all treatments, especially with three-component consortia, but not with all plants and samplings. Inoculation had no negative impact on the prevalence of mycorrhizal taxa in roots. In conclusion, this study brought new insights in the functioning of microbial consortia and showed that Azospirillum-Pseudomonas-Glomus three-component inoculants may be useful in environmental biotechnology for maize growth promotion.


Assuntos
Azospirillum/fisiologia , Glomeromycota/fisiologia , Pseudomonas/fisiologia , Zea mays/crescimento & desenvolvimento , Azospirillum/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Zea mays/microbiologia
5.
Microbiology (Reading) ; 157(Pt 6): 1694-1705, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21273247

RESUMO

Pseudomonads producing the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) can control soil-borne phytopathogens, but their impact on other plant-beneficial bacteria remains poorly documented. Here, the effects of synthetic Phl and Phl(+) Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators were investigated. Most A. brasilense strains were moderately sensitive to Phl. In vitro, Phl induced accumulation of carotenoids and poly-ß-hydroxybutyrate-like granules, cytoplasmic membrane damage and growth inhibition in A. brasilense Cd. Experiments with P. fluorescens F113 and a Phl(-) mutant indicated that Phl production ability contributed to in vitro growth inhibition of A. brasilense Cd and Sp245. Under gnotobiotic conditions, each of the three strains, P. fluorescens F113 and A. brasilense Cd and Sp245, stimulated wheat growth. Co-inoculation of A. brasilense Sp245 and Pseudomonas resulted in the same level of phytostimulation as in single inoculations, whereas it abolished phytostimulation when A. brasilense Cd was used. Pseudomonas Phl production ability resulted in lower Azospirillum cell numbers per root system (based on colony counts) and restricted microscale root colonization of neighbouring Azospirillum cells (based on confocal microscopy), regardless of the A. brasilense strain used. Therefore, this work establishes that Phl(+) pseudomonads have the potential to interfere with A. brasilense phytostimulators on roots and with their plant growth promotion capacity.


Assuntos
Antibacterianos/farmacologia , Azospirillum brasilense/efeitos dos fármacos , Azospirillum brasilense/metabolismo , Controle Biológico de Vetores , Pseudomonas fluorescens/metabolismo , Triticum/crescimento & desenvolvimento , Antibacterianos/síntese química , Antibacterianos/metabolismo , Azospirillum brasilense/crescimento & desenvolvimento , Carotenoides/metabolismo , Carotenoides/farmacologia , Hidroxibutiratos/metabolismo , Hidroxibutiratos/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/síntese química , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poliésteres/metabolismo , Poliésteres/farmacologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...