Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2530-2535, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010197

RESUMO

Surface-enhanced Raman optical activity (SEROA) has been extensively investigated due to its ability to directly probe stereochemistry and molecular structure. However, most works have focused on the Raman optical activity (ROA) effect arising from the chirality of the molecules on isotropic surfaces. Here, we propose a strategy for achieving a similar effect: i.e., a surface-enhanced Raman polarization rotation effect arising from the coupling of optically inactive molecules with the chiral plasmonic response of metasurfaces. This effect is due to the optically active response of metallic nanostructures and their interaction with molecules, which could extend the ROA potential to inactive molecules and be used to enhance the sensibility performances of surface-enhanced Raman spectroscopy. More importantly, this technique does not suffer from the heating issue present in traditional plasmonic-enhanced ROA techniques, as it does not rely on the chirality of the molecules.

2.
iScience ; 24(6): 102694, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34195570

RESUMO

Topological insulators (TIs) are bulk insulators with metallic surface states that can be described by a single Dirac cone. However, low-dimensional solids such as nanowires (NWs) are a challenge, due to the difficulty of separating surface contributions from bulk carriers. Fabrication of NWs with high surface-to-volume ratio can be realized by different methods such as chemical vapor transport, molecular beam epitaxy, and electrodeposition. The last method is used in the present work allowing the growth of structures such as p-n junctions, intercalation of magnetic or superconducting dots. We report the synthesis of high-quality TI NW: Bi2Te3, Sb2Te3 and p-n junction via electrodeposition. Structural, morphological, and nanostructure properties of NWs have been investigated by various characterization techniques. Interface structures and lateral heterojunctions (LHJ) in p-n junction NWs has also been made.

3.
Inorg Chem ; 58(24): 16387-16401, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31790218

RESUMO

Crystallization from glass can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel compounds and control the optical properties of resulting glass-ceramics. Here, we report on a crystallization study of the ZrF4-TeO2 glass system and show that under specific synthesis conditions, a previously unreported Te0.47Zr0.53OxFy zirconium oxyfluorotellurite antiglass phase can be selectively crystallized at the nanometric scale within the 65TeO2-35ZrF4 amorphous matrix. This leads to highly transparent glass-ceramics in both the visible and near-infrared ranges. Under longer heat treatment, the stable cubic ZrTe3O8 phase crystallizes in addition to the previous unreported antiglass phase. The structure, microstructure, and optical properties of 65TeO2-35ZrF4Tm3+-doped glass-ceramics, were investigated in detail by means of X-ray diffraction, scanning and transmission electron microscopies, and 19F, 91Zr, and 125Te NMR, Raman, and photoluminescence spectroscopies. The crystal chemistry study of several single crystals samples by X-ray diffraction evidence that the novel phase, derived from α-UO3 type, corresponds in terms of long-range ordering inside this basic hexagonal/trigonal disordered phase (antiglass) to a complex series of modulated microphases rather than a stoichiometric compound with various superstructures analogous to those observed in the UO3-U3O8 subsystem. These results highlight the peculiar disorder-order phenomenon occurring in tellurite materials.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717583

RESUMO

Vertically aligned carbon nanotube (VACNT) forests are promising for supercapacitor electrodes, but their industrialisation requires a large-scale cost-effective synthesis process suitable to commercial aluminium (Al) foils, namely by operating at a low temperature (<660 °C). We show that Aerosol-Assisted Catalytic Chemical Vapour Deposition (CCVD), a single-step roll-to-roll compatible process, can be optimised to meet this industrial requirement. With ferrocene as a catalyst precursor, acetylene as a carbon source and Ar/H2 as a carrier gas, clean and dense forests of VACNTs of about 10 nm in diameter are obtained at 615 °C with a growth rate up to 5 µm/min. Such novel potentiality of this one-step CCVD process is at the state-of-the-art of the multi-step assisted CCVD processes. To produce thick samples, long synthesis durations are required, but growth saturation occurs that is not associated with a diffusion phenomenon of iron in aluminium substrate. Sequential syntheses show that the saturation trend fits a model of catalytic nanoparticle deactivation that can be limited by decreasing acetylene flow, thus obtaining sample thickness up to 200 µm. Cyclic voltammetry measurements on binder-free VACNT/Al electrodes show that the CNT surface is fully accessible to the ionic liquid electrolyte, even in these dense VACNT forests.

5.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689917

RESUMO

Lanthanide-doped nanoparticles are widely investigated for their optical properties. However, the sensitivity of the lanthanide ions' luminescence to the local symmetry, useful when investigating structural environments, becomes a drawback for optimized properties in the case of poorly controlled crystallinity. In this paper, we focus on ß -NaYF4 nanorods in order to provide a detailed description of their chemical composition and microstructure. The combination of detailed XRD analysis and TEM observations show that strong variation may be observed from particles from a same batch of synthesis, but also when considering small variations of synthesis conditions. Moreover, also the nanorods observed by SEM exhibit a very nice faceted shape, they are far from being monocrystalline and present significant local deviation of crystalline symmetry and orientation. All these structural considerations, sensitively probed by polarized emission analysis, are crucial to analyze for the development of optimal systems toward the targeted applications.

6.
Materials (Basel) ; 12(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661780

RESUMO

Protein adsorption at the liquid-solid interface is an old but not totally solved topic. One challenge is to find an easy way to characterize the protein behavior on nanoparticles and make a correlation with its intrinsic properties. This work aims to investigate protein adsorption on gold nanoparticles and the colloidal properties. The protein panel was chosen from different structural categories (mainly-α, mainly-ß or mix-αß). The result shows that the colloidal stability with salt addition does not depend on the structural category. Conversely, using the single nanopore technique, we show that the mainly-α proteins form a smaller corona than the mainly-ß proteins. We assign these observations to the lower internal energy of α-helices, making them more prone to form a homogeneous corona layer.

7.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952788

RESUMO

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

8.
Nanoscale ; 10(34): 16030-16039, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30106078

RESUMO

Heterostructures based on Prussian blue analogues (PBA) combining photo- and magneto-striction have shown a large potential for the development of light-induced magnetization switching. However, studies of the microscopic parameters that control the transfer of the mechanical stresses across the interface and their propagation in the magnetic material are still too scarce to efficiently improve the elastic coupling. Here, this coupling strength is tentatively controlled by strain engineering in heteroepitaxial PBA core-shell heterostructures involving the same Rb0.5Co[Fe(CN)6]0.8·zH2O photostrictive core and isostructural shells of similar thickness and variable mismatch with the core lattice. The shell deformation and the optical electron transfer at the origin of photostriction are monitored by combined in situ and real time synchrotron X-ray powder diffraction and X-ray absorption spectroscopy under visible light irradiation. These experiments show that rather large strains, up to +0.9%, are developed within the shell in response to the tensile stresses associated with the expansion of the core lattice upon illumination. The shell behavior is, however, complex, with contributions in dilatation, in compression or unchanged. We show that a tailored photo-response in terms of strain amplitude and kinetics with potential applications for a magnetic manipulation using light requires a trade-off between the quality of the interface (which needs a small lattice mismatch i.e. a small a-cubic parameter for the shell) and the shell rigidity (decreased for a large a-parameter). A shell with a high compressibility that is further increased by the presence of misfit dislocations will show a decrease in its mechanical retroaction on the photo-switching properties of the core particles.

9.
Nanoscale ; 10(30): 14492-14498, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30022204

RESUMO

Nanoparticles (NPs) homogeneously covered with polymer chains or with chains of two different polymers segregated in distinct domains ("Janus" particles) possess remarkable features. Their unique colloidal properties can be finely tuned by the grafted polymers while the characteristics of the nano-core remain unaffected. Herein, a simple and robust photochemical approach is reported to synthesize, from 50 nm cores, homogeneous and Janus "hairy" nanoparticles with hydrophilic and amphiphilic properties, respectively. This is achieved by using a surface-anchored bis(acyl)phosphane oxide photoinitiator which allows a spatially controlled surface-initiated photopolymerization at room temperature. Homogeneous and Janus hairy nanoparticles dispersed in water have very different interaction behaviours which are directly visualized by in situ liquid cell transmission electron microscopy and confirmed by small angle X-ray scattering from a statistically relevant number of particles.

10.
Langmuir ; 34(30): 8866-8874, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30001624

RESUMO

The understanding of the interactions between nanomaterials, biomolecules, and polyphenols is fundamental in food chemistry, toxicology, and new emerging fields, such as nanomedicine. Here, we investigated the effect of the resveratrol, a principal actor in drug-delivery application on the interaction between bovine serum albumin (BSA), employed as a vector for the delivery of polyphenol drugs, and gold nanoparticle (gNP), the most promising tool in theranostic applications. Through a combination of experimental techniques, which includes an initial evaluation by dynamic light scattering and surface plasmon resonance spectroscopy, we were able to evaluate the evolution of the gold nanoparticle aggregation with increasing ionic strength and the consequences of the BSA and resveratrol addition. To investigate the mechanisms of the interactions, we pursued at the single-molecule level using solid-state nanopore and fluorescence correlation spectroscopy. Our results show that without resveratrol, the BSA is adsorbed on the gNP in water or saline solution. In the presence of resveratrol, the BSA is normally absorbed on gNP in water, but the salt addition leads to its desorption. The resveratrol clearly plays a fundamental role, changing the protein behavior and making the BSA adsorption a reversible process in the presence of salt.


Assuntos
Adsorção/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Resveratrol/farmacologia , Soroalbumina Bovina , Difusão Dinâmica da Luz , Ouro/química , Ressonância de Plasmônio de Superfície
11.
Sci Rep ; 6: 37469, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881838

RESUMO

Ion beam shaping is a novel and powerful tool to engineer nanocomposites with effective three-dimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix. Furthermore, we investigate individual nanorods using a nonlinear optical microscope based on second-harmonic generation (SHG). A tightly focused linearly or radially-polarized laser beam is used to excite nanorods with different orientations. We demonstrate high sensitivity of the SHG response for these polarizations to the orientation of the nanorods. The SHG measurements are in excellent agreement with the results of numerical modeling based on the boundary element method.

12.
Langmuir ; 32(35): 8916-25, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27506271

RESUMO

For the past 2 decades, emerging single-nanopore technologies have opened the route to multiple sensing applications. Besides DNA sensing, the identification of proteins and amyloids is a promising field for early diagnosis. However, the influence of the interactions between the nanopore surface and proteins should be taken into account. In this work, we have selected three proteins (avidin, lysozyme, and IgG) that exhibit different affinities with the SiNx surface, and we have also examined lysozyme amyloid. Our results show that the piranha treatment of SiNx significantly decreases protein adsorption. Moreover, we have successfully detected all proteins (pore diameter 17 nm) and shown the possibility of discriminating between denatured lysozyme and its amyloid. For all proteins, the capture rates are lower than expected, and we evidence that they are correlated with the affinity of proteins to the surface. Our result confirms that proteins interacting only with the nanopore surface wall stay long enough to be detected. For lysozyme amyloid, we show that the use of the nanopore is suitable for determining the number of monomer units even if only the proteins interacting with the nanopore are detected.


Assuntos
Amiloide/análise , Avidina/análise , Imunoglobulina G/análise , Muramidase/análise , Compostos de Silício/química , Adsorção , Amiloide/química , Avidina/química , Técnicas Eletroquímicas , Imunoglobulina G/química , Cinética , Muramidase/química , Nanoporos/ultraestrutura , Soluções
13.
Sci Rep ; 6: 21116, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883992

RESUMO

Ion beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm. Samples have been irradiated with 74 MeV Kr ions at room temperature and for increasing fluences up to 3.8 × 10(14) cm(-2). In parallel, the experimental results have been theoretically simulated by using a three-dimensional code based on the thermal-spike model. These calculations show that the particles undergo a partial melting during the ion impact, and that the amount of molten phase is maximal when the impact is off-center, hitting only one hemisphere of the hollow nano-particle. We suggest a deformation scenario which differs from the one that is generally proposed for solid nano-particles. Finally, these functional materials can be seen as building blocks for the fabrication of nanodevices with really three-dimensional architecture.

14.
Nanotechnology ; 26(14): 144001, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25785663

RESUMO

We investigate the influence of a nanopore surface state and the addition of Mg(2+) on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3-5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations.


Assuntos
Nanoporos , Adenosina/química , Eletricidade , Magnésio/química , Nanoporos/ultraestrutura , Polímeros/química , Propriedades de Superfície
15.
Langmuir ; 28(45): 15966-74, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23116539

RESUMO

The size control of gold nanoparticles synthesized in surfactant free water with a continuous flow mode was elucidated and used to produce higher concentration (3 mM) of stabilized gold nanoparticles. The originality of the synthesis was to finely modulate the initial pH of the reducing agent instead of the gold precursor to modify the kinetic of the reaction. The acceleration of the kinetic (~1 s) prevents the modification of the gold precursors ensuring the control of the final size (from 3 to 25 nm) of the nanoparticles with a low polydispersity for aqueous surfactant free solution. The accurate measure of the size distribution by small angle X-ray scattering was combined to the use of a model based on the coupling of nucleation and growth equations together with a progressive injection of monomers. The results on the final state show that the size of the nanoparticles is indeed controlled by the kinetic of reduction of gold atoms. A millifluidic setup equipped with a homemade mixer offers a robust way of rapid mixing to obtain a reproducible production of large amounts of nanoparticles.


Assuntos
Materiais Biocompatíveis/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentação , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Langmuir ; 27(9): 5555-61, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21469685

RESUMO

Crystalline rare earth fluoride nanoparticles were synthesized by reacting rare earth ions with charge-transfer complexes, in solution, under mild conditions. An infrared study showed that these intermediate complexes are made up of solvent molecules (amide: N,N-dimethylformamide, 1-methyl-2-pyrrolidinone, etc.) and fluoride ions coming from hydrofluoric acid. The size and shape of the particles can be controlled through the process parameters. The complete study of the particles obtained through this process is carried out in this document, especially for the YbF(3) system. However, the process can easily be extended to the whole series of rare earth elements. We also show the ability of these objects to be transferred from an aqueous medium to an organic phase thanks to their surface modification. Finally, transparent monolithic xerogels of rare earth fluoride have been developed starting from the prepared colloidal solutions.

17.
Nanotechnology ; 22(17): 175305, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21411926

RESUMO

We have studied how spherical 23 ± 3 nm Au(45)Ag(55) nanoparticles embedded within a silica matrix transform into prolate nanorods and nanowires by irradiating them with swift heavy ions. Samples were irradiated at room temperature and normal incidence with 74 MeV Kr and 36 MeV S ions for fluences up to 1.0 × 10(15) cm(-2). We demonstrate the existence of two regimes: (i) below a critical fluence, ∼ 2.0 × 10(14) cm(-2), the transformation of the spherical nanoparticle into a nanorod is an individual process, i.e. each nanoparticle transforms into a single nanorod; (ii) for larger fluences the transformation from nanorod to nanowire becomes a collective process, i.e. the break up and dissolution of unstable nanorods contribute to the growth of long nanowires. The passage from the first to the second regime can be interpreted in terms of a Rayleigh-like instability under irradiation. The latter becomes active when the diameter of the nanowire approaches its saturation width under irradiation. Furthermore, we show that the composition of the alloy is only slightly modified during the ion-shaping process. Finally, the energy and the fluence thresholds for deformation and the deformation strain-rate are estimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...