Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 3(9): 3073-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24101995

RESUMO

Movement away from an area or social group in response to increasing density (density-dependent dispersal) is known for most species; why it evolves is fundamental to our understanding of ecology and evolution. However, we have yet to fully appreciate how individuals of varying conditions (e.g., age and sex) might differently consider effects of density (quorum) when deciding to disperse or not, and scale dependence in their sense of quorum. We tracked movements of all individuals of a naturalized population of feral horses (Equus ferus caballus; Sable Island National Park Reserve, Nova Scotia, Canada) during a period of rapid population growth (N increased from 375 to 484 horses from 2008 to 2010). Permanent dispersal from breeding groups (bands) was positively density dependent for all age and sex categories with respect to local density (horses/km(2), bounded by the 99th percentile of individual movements [8000 m]), but was negatively and positively density dependent for males and females, respectively, in relation to group (band) size. Dispersal was generally female biased, with the exception of foals which moved with their mothers (no sex effect), and for yearlings and subadults when band sizes were smaller than average, in which case males dispersed at higher rates than females. Dispersal distance was positively related to local density. We conclude that dispersal rate can be both positively and negatively density dependent for feral horses, contingent on the state of individuals and the scale at which quorum with respect to choosing to disperse or not is assessed. Scale effects and interactions of density-dependent and sex- and age-biased dispersal may have both ecological and evolutionary consequences through effects on resource and mate competition.

2.
Proc Biol Sci ; 273(1591): 1173-81, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16720388

RESUMO

Population dynamics result from the interplay of density-independent and density-dependent processes. Understanding this interplay is important, especially for being able to predict near-term population trajectories for management. In recent years, the study of model systems-experimental, observational and theoretical-has shed considerable light on the way that the both density-dependent and -independent aspects of the environment affect population dynamics via impacting on the organism's life history and therefore demography. These model-based approaches suggest that (i) individuals in different states differ in their demographic performance, (ii) these differences generate structure that can fluctuate independently of current total population size and so can influence the dynamics in important ways, (iii) individuals are strongly affected by both current and past environments, even when the past environments may be in previous generations and (iv) dynamics are typically complex and transient due to environmental noise perturbing complex population structures. For understanding population dynamics of any given system, we suggest that 'the devil is in the detail'. Experimental dissection of empirical systems is providing important insights into the details of the drivers of demographic responses and therefore dynamics and should also stimulate theory that incorporates relevant biological mechanism.


Assuntos
Adaptação Fisiológica , Demografia , Ecossistema , Animais , Modelos Biológicos , Fenótipo , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...