Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(30): 34137-34147, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32634302

RESUMO

Organic clathrates formed by hydroquinone (HQ) and gases such as CO2 and CH4 are solid supramolecular host-guest compounds in which the gaseous guest molecules are encaged in a host framework of HQ molecules. Not only are these inclusion compounds fascinating scientific curiosities but they can also be used in practical applications such as gas separation. However, the development and future use of clathrate-based processes will largely depend on the effectiveness of the reactive materials used. These materials should enable fast and selective enclathration and have a large gas storage capacity. This article discusses the properties and performance of a new composite material able to form gas clathrates with hydroquinone (HQ) deposited on alumina particles. Apart from the general characterization of the HQ-alumina composite, one of the most remarkable observations is the unexpected formation of a guest-free clathrate structure with long-term stability (>2 years) inside the composite. Interestingly enough, in addition to a slight improvement in the enclathration kinetics of pure CO2 compared to powdered HQ, preferential capture of CO2 molecules is observed when the HQ-alumina composite is exposed to an equimolar CO2/CH4 gas mixture. In terms of gas capture selectivity toward CO2, the performance of this new composite exceeds that of pure HQ and HQ-silica composites developed in a previous study, opening up new opportunities for the design and use of these novel materials for gas separation.

2.
J Phys Chem A ; 121(29): 5450-5458, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28675931

RESUMO

Hydroquinone (HQ) is known to form organic clathrates with different gaseous species over a wide range of pressures and temperatures. However, the enclathration reaction involving HQ is not fully understood. This work offers new elements of understanding HQ clathrate formation and dissociation mechanisms. The kinetics and selectivity of the enclathration reaction were also investigated. The focus was placed on HQ clathrates formed with CO2 and CH4 as guest molecules for potential use in practical applications for the separation of a CO2/CH4 gas mixture. The structural transition from the native form (α-HQ) to the clathrate form (ß-HQ), as well as the reverse process, were tracked using in situ Raman spectroscopy. The clathrate formation was conducted at 323 K and 3.0 MPa, and the dissociation was conducted at 343 K and 1.0 kPa. The experiments with CH4 confirmed that a small amount of gas can fill the α-HQ before the phase transition from α- to ß-HQ begins. The dissociation of the CO2-HQ clathrates highlighted the presence of a clathrate structure with no guest molecules. We can therefore conclude that HQ clathrate formation and dissociation are two-step reactions that pass through two distinct reaction intermediates: guest-loaded α-HQ and guest-free ß-HQ. When an equimolar CO2/CH4 gas mixture is put in contact with either the α-HQ or the guest-free ß-HQ, the CO2 is preferentially captured. Moreover, the guest-free ß-HQ can retain the CO2 quicker and more selectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...