Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Res Natl Inst Stand Technol ; 126: 126051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469446

RESUMO

The tragedy of the radium poisoning of young women dial painters in the 1920s has been the subject of best-selling books, plays, and motion pictures. With knowledge about radium and its accurate measurements in the hands of a very few scientists, what responsibilities did they have to sound the alarm and mitigate the hazards to workers and the general public? This two-part analysis looks at the role of the staff of the U.S. Bureau of Standards (the National Bureau of Standards [NBS] after 1934) in developing measurements and standards for accurate determinations of radium-226 and radon-222 that ultimately led to national standards for exposure to radioactive substances. Part I looks at the efforts of Elizabeth Hughes, with guidance from her senior colleague at the NBS, to assist dial painters with obtaining redress for their injuries. Part II examines the role of NBS in establishing the national radiation protection standards that were promulgated by the U.S. Department of Commerce (DOC) and the National Council on Radiation Protection and Measurements (NCRP).

3.
J Res Natl Inst Stand Technol ; 125: 125001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34900399

RESUMO

In the late 1930s, a team of physicists from the National Bureau of Standards (now the National Institute of Standards and Technology) published eight papers on the investigation of cosmic rays in the atmosphere. Payloads launched with weather balloons, also known as radiosondes, were equipped with sensors to measure temperature, relative humidity, pressure, and radiation dose. A battery-operated telemetry system was used to continuously transmit at 60 MHz to a base station. They measured the radiation dose profiles of cosmic radiation in the atmosphere up to 21 km. Calibration of the Geiger-Müller counters with a standard radium source allowed them to calculate a radiation dose rate at an altitude corresponding to 10 kPa that was 180 times the dose rate near sea level in Washington, DC. Ascents in Washington, DC (latitude 39 degrees) and Lima, Peru (near equator) allowed them to demonstrate the effects of Earth's magnetic field on incident galactic cosmic rays; the dose rate in Peru was only half that in Washington, DC.

4.
Appl Radiat Isot ; 130: 280-284, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29079418
5.
Appl Radiat Isot ; 118: 395-400, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27836327
6.
J Res Natl Inst Stand Technol ; 119: 371-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26601035

RESUMO

The new NIST activity standardization for (18)F, described in 2014 in Applied Radiation and Isotopes (v. 85, p. 77), differs from results obtained between 1998 and 2008 by 4 %. The new results are considered to be very reliable; they are based on a battery of robust primary measurement techniques and bring the NIST standard into accord with other national metrology institutes. This paper reviews all ten (18)F activity standardizations performed at NIST from 1982 to 2013, with a focus on experimental variables that might account for discrepancies. We have identified many possible sources of measurement bias and eliminated most of them, but we have not adequately accounted for the 1998-2008 results.

7.
Appl Radiat Isot ; 87: 142-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24369891

RESUMO

Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development.

8.
Med Phys ; 31(3): 633-74, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15070264

RESUMO

Since publication of the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report in 1995 (TG-43), both the utilization of permanent source implantation and the number of low-energy interstitial brachytherapy source models commercially available have dramatically increased. In addition, the National Institute of Standards and Technology has introduced a new primary standard of air-kerma strength, and the brachytherapy dosimetry literature has grown substantially, documenting both improved dosimetry methodologies and dosimetric characterization of particular source models. In response to these advances, the AAPM Low-energy Interstitial Brachytherapy Dosimetry subcommittee (LIBD) herein presents an update of the TG-43 protocol for calculation of dose-rate distributions around photon-emitting brachytherapy sources. The updated protocol (TG-43U1) includes (a) a revised definition of air-kerma strength; (b) elimination of apparent activity for specification of source strength; (c) elimination of the anisotropy constant in favor of the distance-dependent one-dimensional anisotropy function; (d) guidance on extrapolating tabulated TG-43 parameters to longer and shorter distances; and (e) correction for minor inconsistencies and omissions in the original protocol and its implementation. Among the corrections are consistent guidelines for use of point- and line-source geometry functions. In addition, this report recommends a unified approach to comparing reference dose distributions derived from different investigators to develop a single critically evaluated consensus dataset as well as guidelines for performing and describing future theoretical and experimental single-source dosimetry studies. Finally, the report includes consensus datasets, in the form of dose-rate constants, radial dose functions, and one-dimensional (1D) and two-dimensional (2D) anisotropy functions, for all low-energy brachytherapy source models that met the AAPM dosimetric prerequisites [Med. Phys. 25, 2269 (1998)] as of July 15, 2001. These include the following 125I sources: Amersham Health models 6702 and 6711, Best Medical model 2301, North American Scientific Inc. (NASI) model MED3631-A/M, Bebig/Theragenics model I25.S06, and the Imagyn Medical Technologies Inc. isostar model IS-12501. The 103Pd sources included are the Theragenics Corporation model 200 and NASI model MED3633. The AAPM recommends that the revised dose-calculation protocol and revised source-specific dose-rate distributions be adopted by all end users for clinical treatment planning of low energy brachytherapy interstitial sources. Depending upon the dose-calculation protocol and parameters currently used by individual physicists, adoption of this protocol may result in changes to patient dose calculations. These changes should be carefully evaluated and reviewed with the radiation oncologist preceding implementation of the current protocol.


Assuntos
Braquiterapia/métodos , Braquiterapia/normas , Radiometria/métodos , Radiometria/normas , Ar , Anisotropia , Calibragem , Humanos , Radioisótopos do Iodo/uso terapêutico , Modelos Estatísticos , Método de Monte Carlo , Paládio/uso terapêutico , Fótons , Radioisótopos/uso terapêutico , Software
9.
Med Phys ; 31(3): 675-81, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15070265

RESUMO

Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.


Assuntos
Braquiterapia/métodos , Braquiterapia/normas , Radiometria/métodos , Ar , Calibragem , Humanos , Radioisótopos do Iodo/uso terapêutico , Paládio/uso terapêutico , Fótons , Radioisótopos/uso terapêutico , Dosagem Radioterapêutica
11.
J Res Natl Inst Stand Technol ; 108(5): 337-58, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-27413614

RESUMO

The new U.S. measurement standard for the air-kerma strength from low-energy photon-emitting brachytherapy seed sources is formally described in detail. This instrument-based standard was implemented on 1 January 1999, with its salient features and the implications of differences with the previous standard given only through a series of informal communications. The Wide-Angle Free-Air Chamber (WAFAC) is specially designed to realize air kerma from a single-seed source emitting photons with energies up to about 40 keV, and is now used to measure the wide variety of seeds used in prostate-cancer therapy that has appeared in the last few years. For the two (125)I seed models that have been subject to both the old and new standards, the new standard reduces the air-kerma strength by 10.3 %. This change is mainly due to the removal of the influence on the measurement of the Ti K x rays produced in the source encapsulation, a component with no clinical significance.

12.
Radiat Res ; 157(3): 341-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11839097

RESUMO

The present communication describes the technical aspects of the first application of an imaging plate for visualization of (90)Sr deposited in human teeth. The teeth were obtained from Techa River area residents who were exposed as a result of releases of radioactivity into the Techa River by the first Soviet nuclear plant Mayak in the early 1950s. The investigations form the basis for an experimental procedure for accurate mapping of the distribution of (90)Sr in teeth with an imaging plate. This new method can be used as an individual indicator of radionuclide intake. Its advantages are its high sensitivity (0.02 Bq/g mm(-2) of (90)Sr), it ability to examine small detectable cross-sectional areas of dental tissue (dentin) contaminated with (90)Sr (from 0.01 mm(2)), the nondestructive method of analysis, and the simplicity of use. The combined application of this method with EPR tooth biodosimetry can provide more accurate dose reconstruction and may lead to more effective radiation risk assessment.


Assuntos
Radiometria/instrumentação , Radioisótopos de Estrôncio/metabolismo , Dente/metabolismo , Calibragem , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...