Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0295627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252641

RESUMO

The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of metronidazole, vancomycin, and fidaxomicin to kill C. difficile. The activity of metronidazole, which targets DNA, is enhanced by a factor of 32 when combined with p3, previously shown to bind and condense DNA. Conversely, the activity of vancomycin, which acts at bacterial cell walls, is enhanced 64-fold when combined with membrane-active p1-Cu2+. As shown through microscopy monitoring the permeabilization of membranes of C. difficile cells and vesicle mimics of their membranes, the adjuvant effect of p1 and p3 in the apo and holo states is consistent with a mechanism of action where the peptides enable greater antibiotic penetration through the cell membrane to increase their bioavailability. The variations in effects obtained with the different forms of the peptides reveal that while all piscidins generally sensitize C. difficile to antibiotics, co-treatments can be optimized in accordance with the underlying mechanism of action of the peptides and antibiotics. Overall, this study highlights the potential of antimicrobial peptides as antibiotic adjuvants to increase the lethality of currently approved antibiotic dosages, reducing the risk of incomplete treatments and ensuing drug resistance.


Assuntos
Antibacterianos , Clostridioides difficile , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Vancomicina/farmacologia , Metronidazol , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Clostridioides , DNA
2.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653020

RESUMO

The development of new therapeutic options against Clostridioides difficile (C. difficile) infection is a critical public health concern, as the causative bacterium is highly resistant to multiple classes of antibiotics. Antimicrobial host-defense peptides (HDPs) are highly effective at simultaneously modulating the immune system function and directly killing bacteria through membrane disruption and oxidative damage. The copper-binding HDPs piscidin 1 and piscidin 3 have previously shown potent antimicrobial activity against a number of Gram-negative and Gram-positive bacterial species but have never been investigated in an anaerobic environment. Synergy between piscidins and metal ions increases bacterial killing aerobically. Here, we performed growth inhibition and time-kill assays against C. difficile showing that both piscidins suppress proliferation of C. difficile by killing bacterial cells. Microscopy experiments show that the peptides accumulate at sites of membrane curvature. We find that both piscidins are effective against epidemic C. difficile strains that are highly resistant to other stresses. Notably, copper does not enhance piscidin activity against C. difficile. Thus, while antimicrobial activity of piscidin peptides is conserved in aerobic and anaerobic settings, the peptide-copper interaction depends on environmental oxygen to achieve its maximum potency. The development of pharmaceuticals from HDPs such as piscidin will necessitate consideration of oxygen levels in the targeted tissue.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Peixes/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Parede Celular/metabolismo , Clostridioides difficile/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Cobre/toxicidade , Proteínas de Peixes/síntese química , Corantes Fluorescentes/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Oxigênio/química
3.
Anaerobe ; 59: 205-211, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31386902

RESUMO

Regulation of bacterial motility to maximize nutrient acquisition or minimize exposure to harmful substances plays an important role in microbial proliferation and host colonization. The technical difficulties of performing high-resolution live microscopy on anaerobes have hindered mechanistic studies of motility in Clostridioides (formerly Clostridium) difficile. Here, we present a widely applicable protocol for live cell imaging of anaerobic bacteria that has allowed us to characterize C. difficile swimming at the single-cell level. This accessible method for anaerobic live cell microscopy enables inquiry into previously inaccessible aspects of C. difficile physiology and behavior. We present the first report that vegetative C. difficile are capable of regulated motility in the presence of different nutrients. We demonstrate that the epidemic C. difficile strain R20291 exhibits regulated motility in the presence of multiple nutrient sources by modulating its swimming velocity. This is a powerful illustration of the ability of single-cell studies to explain population-wide phenomena such as dispersal through the environment.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Microscopia Intravital/métodos , Locomoção/efeitos dos fármacos , Nutrientes/metabolismo
4.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28652311

RESUMO

The signaling molecule cyclic diguanylate (c-di-GMP) mediates physiological adaptation to extracellular stimuli in a wide range of bacteria. The complex metabolic pathways governing c-di-GMP synthesis and degradation are highly regulated, but the specific cues that impact c-di-GMP signaling are largely unknown. In the intestinal pathogen Clostridium difficile, c-di-GMP inhibits flagellar motility and toxin production and promotes pilus-dependent biofilm formation, but no specific biological functions have been ascribed to any of the individual c-di-GMP synthases or phosphodiesterases (PDEs). Here, we report the functional and biochemical characterization of a c-di-GMP PDE, PdcA, 1 of 37 confirmed or putative c-di-GMP metabolism proteins in C. difficile 630. Our studies reveal that pdcA transcription is controlled by the nutrient-regulated transcriptional regulator CodY and accordingly increases during stationary phase. In addition, PdcA PDE activity is allosterically regulated by GTP, further linking c-di-GMP levels to nutrient availability. Mutation of pdcA increased biofilm formation and reduced toxin biosynthesis without affecting swimming motility or global intracellular c-di-GMP. Analysis of the transcriptional response to pdcA mutation indicates that PdcA-dependent phenotypes manifest during stationary phase, consistent with regulation by CodY. These results demonstrate that inactivation of this single PDE gene is sufficient to impact multiple c-di-GMP-dependent phenotypes, including the production of major virulence factors, and suggest a link between c-di-GMP signaling and nutrient availability.


Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/enzimologia , Clostridioides difficile/fisiologia , GMP Cíclico/análogos & derivados , Diester Fosfórico Hidrolases/metabolismo , Clostridioides difficile/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Locomoção , Diester Fosfórico Hidrolases/genética
5.
Exp Cell Res ; 334(1): 10-5, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25819274

RESUMO

Myosin-X (Myo10) is a motor protein best known for its role in filopodia formation. New research implicates Myo10 in a number of disease states including cancer metastasis and pathogen infection. This review focuses on these developments with emphasis on the emerging roles of Myo10 in formation of cancer cell protrusions and metastasis. A number of aggressive cancers show high levels of Myo10 expression and knockdown of Myo10 has been shown to dramatically limit cancer cell motility in 2D and 3D systems. Myo10 knockdown also limits spread of intracellular pathogens marburgvirus and Shigella flexneri. Consideration is given to how these properties might arise and potential paths of future research.


Assuntos
Miosinas/metabolismo , Neoplasias/metabolismo , Humanos , Neoplasias/patologia
6.
J Biol Chem ; 286(30): 26964-77, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21642440

RESUMO

Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.


Assuntos
Citoesqueleto de Actina/metabolismo , Citocinese/fisiologia , Endocitose/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
7.
J Biol Chem ; 286(7): 5567-77, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21177250

RESUMO

Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and ß-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both α- and ß-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and ß-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.


Assuntos
Citoesqueleto de Actina/enzimologia , Miosinas Cardíacas/metabolismo , Histona Desacetilases/metabolismo , Miocárdio/enzimologia , Cadeias Pesadas de Miosina/metabolismo , Acetilação , Citoesqueleto de Actina/genética , Animais , Miosinas Cardíacas/genética , Histona Desacetilases/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Cadeias Pesadas de Miosina/genética , Estresse Fisiológico/genética
8.
J Biol Chem ; 285(34): 26350-7, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20551315

RESUMO

Self-assembly of complex structures is commonplace in biology but often poorly understood. In the case of the actin cytoskeleton, a great deal is known about the components that include higher order structures, such as lamellar meshes, filopodial bundles, and stress fibers. Each of these cytoskeletal structures contains actin filaments and cross-linking proteins, but the role of cross-linking proteins in the initial steps of structure formation has not been clearly elucidated. We employ an optical trapping assay to investigate the behaviors of two actin cross-linking proteins, fascin and alpha-actinin, during the first steps of structure assembly. Here, we show that these proteins have distinct binding characteristics that cause them to recognize and cross-link filaments that are arranged with specific geometries. alpha-Actinin is a promiscuous cross-linker, linking filaments over all angles. It retains this flexibility after cross-links are formed, maintaining a connection even when the link is rotated. Conversely, fascin is extremely selective, only cross-linking filaments in a parallel orientation. Surprisingly, bundles formed by either protein are extremely stable, persisting for over 0.5 h in a continuous wash. However, using fluorescence recovery after photobleaching and fluorescence decay experiments, we find that the stable fascin population can be rapidly competed away by free fascin. We present a simple avidity model for this cross-link dissociation behavior. Together, these results place constraints on how cytoskeletal structures assemble, organize, and disassemble in vivo.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Proteínas de Transporte/metabolismo , Citoesqueleto/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Animais , Galinhas , Citoesqueleto/metabolismo , Fenômenos Mecânicos , Maleabilidade , Estabilidade Proteica
9.
PLoS One ; 4(8): e6479, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19649241

RESUMO

BACKGROUND: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. METHOD: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. SIGNIFICANCE: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy.


Assuntos
Microscopia/instrumentação , Trifosfato de Adenosina/química , Animais , Desenho de Equipamento , Miosinas/química
10.
Science ; 324(5935): 1729-32, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19460965

RESUMO

In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm and eggs. In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich P granules localize to the posterior of the one-cell embryo. Localization of P granules and their physical nature remain poorly understood. Here we show that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and surface tension. As with other liquids, P granules rapidly dissolved and condensed. Localization occurred by a biased increase in P granule condensation at the posterior. This process reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell. Such phase transitions may represent a fundamental physicochemical mechanism for structuring the cytoplasm.


Assuntos
Caenorhabditis elegans/embriologia , Grânulos Citoplasmáticos/fisiologia , Embrião não Mamífero/citologia , Células Germinativas/ultraestrutura , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Fenômenos Químicos , Citoplasma/metabolismo , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/ultraestrutura , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Transição de Fase , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA de Helmintos/química , Solubilidade , Tensão Superficial , Viscosidade
11.
Proc Natl Acad Sci U S A ; 105(28): 9616-20, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18599451

RESUMO

Eukaryotic cells organize their contents through trafficking along cytoskeletal filaments. The leading edge of a typical metazoan cytoskeleton consists of a dense and complex arrangement of cortical actin. A dendritic mesh is found across the broad lamellopodium, with long parallel bundles at microspikes and filopodia. It is currently unclear whether and how myosin motors identify the few actin filaments that lead to the correct destination, when presented with many similar alternatives within the cortex. Here we show that myosin X, an actin-based motor that concentrates at the distal tips of filopodia, selects the fascin-actin bundle at the filopodial core for motility. Myosin X moves individual actin filaments poorly in vitro, often supercoiling actin into plectonemes. However, single myosin X motors move robustly and processively along fascin-actin bundles. This selection requires only parallel, closely spaced filaments, as myosin X is also processive on artificial actin bundles formed by molecular crowding. Myosin X filopodial localization is perturbed in fascin-depleted HeLa cells, demonstrating that fascin bundles also direct motility in vivo. Our results demonstrate that myosin X recognizes the local structural arrangement of filaments in long bundles, providing a mechanism for sorting cargo to distant target sites.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/genética , Movimento Celular , Proteínas dos Microfilamentos/genética , Miosinas/metabolismo , Animais , Bovinos , Células HeLa , Humanos , Proteínas Motores Moleculares , Miosinas/fisiologia , Pseudópodes/metabolismo , RNA Interferente Pequeno/farmacologia
12.
Proc Natl Acad Sci U S A ; 105(11): 4088-92, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18334642

RESUMO

This study provides comprehensive characterization of the mode of action of bistramide A and identifies structural requirements of bistramide-based compounds that are responsible for severing actin filaments and inhibiting growth of cancer cells in vitro and in vivo. We rationally designed and assembled a series of structural analogs of the natural product, including a fluorescently labeled conjugate. We used TIRF microscopy to directly observe actin filament severing by this series of small molecules, which established that the combination of the spiroketal and the amide subunits was sufficient to enable rapid actin filament disassembly in vitro. In addition, we demonstrated that the enone subunit of bistramide A is responsible for covalent modification of the protein in vitro and in A549 cells, resulting in further increase in the cytotoxicity of the natural product. Our results demonstrate that bistramide A elicits its potent antiproliferative activity by a dual mechanism of action, which entails both severing of actin filaments and covalent sequestration of monomeric actin in the cell.


Assuntos
Acetamidas/química , Citoesqueleto de Actina/química , Piranos/química , Citoesqueleto de Actina/metabolismo , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...