Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38696307

RESUMO

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Assuntos
Senescência Celular , Peróxido de Hidrogênio , Estresse Oxidativo , Água , Humanos , Senescência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Eletrólise
2.
Front Cell Neurosci ; 15: 633610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040505

RESUMO

Cerebral ischemia is a devastating disease that affects many people worldwide every year. The neurodegenerative damage as a consequence of oxygen and energy deprivation, to date, has no known effective treatment. The ischemic insult is followed by an inflammatory response that involves a complex interaction between inflammatory cells and molecules which play a role in the progression towards cell death. However, there is presently a matter of controversy over whether inflammation could either be involved in brain damage or be a necessary part of brain repair. The inflammatory response is triggered by inflammasomes, key multiprotein complexes that promote secretion of pro-inflammatory cytokines. An early event in post-ischemic brain tissue is the release of certain molecules and reactive oxygen species (ROS) from injured neurons which induce the expression of the nuclear factor-kappaB (NF-κB), a transcription factor involved in the activation of the inflammasome. There are conflicting observations related to the role of NF-κB. While some observe that NF-κB plays a damaging role, others suggest it to be neuroprotective in the context of cerebral ischemia, indicating the need for additional investigation. Here we discuss the dual role of the major inflammatory signaling pathways and provide a review of the latest research aiming to clarify the relationship between NF-κB mediated inflammation and neuronal death in cerebral ischemia.

3.
Proc Natl Acad Sci U S A ; 115(41): E9707-E9716, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30242133

RESUMO

Fragile X syndrome (FXS) is the most frequent form of heritable intellectual disability and autism. Fragile X (Fmr1-KO) mice exhibit aberrant dendritic spine structure, synaptic plasticity, and cognition. Autophagy is a catabolic process of programmed degradation and recycling of proteins and cellular components via the lysosomal pathway. However, a role for autophagy in the pathophysiology of FXS is, as yet, unclear. Here we show that autophagic flux, a functional readout of autophagy, and biochemical markers of autophagy are down-regulated in hippocampal neurons of fragile X mice. We further show that enhanced activity of mammalian target of rapamycin complex 1 (mTORC1) and translocation of Raptor, a defining component of mTORC1, to the lysosome are causally related to reduced autophagy. Activation of autophagy by delivery of shRNA to Raptor directly into the CA1 of living mice via the lentivirus expression system largely corrects aberrant spine structure, synaptic plasticity, and cognition in fragile X mice. Postsynaptic density protein (PSD-95) and activity-regulated cytoskeletal-associated protein (Arc/Arg3.1), proteins implicated in spine structure and synaptic plasticity, respectively, are elevated in neurons lacking fragile X mental retardation protein. Activation of autophagy corrects PSD-95 and Arc abundance, identifying a potential mechanism by which impaired autophagy is causally related to the fragile X phenotype and revealing a previously unappreciated role for autophagy in the synaptic and cognitive deficits associated with fragile X syndrome.


Assuntos
Autofagia , Região CA1 Hipocampal/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sinapses/genética , Sinapses/patologia
4.
Cell Death Differ ; 24(2): 317-329, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27935582

RESUMO

The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke.


Assuntos
Autofagia , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Células Cultivadas , Hipocampo/citologia , Isquemia/metabolismo , Isquemia/patologia , Leupeptinas/farmacologia , Lisossomos/efeitos dos fármacos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , Ratos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...