Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38753876

RESUMO

Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.


Assuntos
Vírus da Influenza A , Influenza Humana , RNA Mensageiro , RNA Viral , Proteínas de Ligação a RNA , Animais , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Vírus da Influenza A/genética , Influenza Humana/metabolismo , Influenza Humana/virologia , Influenza Humana/genética , Transporte de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral
2.
Methods Mol Biol ; 2807: 229-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743232

RESUMO

The identification of RNA modifications at single nucleotide resolution has become an emerging area of interest within biology and specifically among virologists seeking to ascertain how this untapped area of RNA regulation may be altered or hijacked upon viral infection. Herein, we describe a straightforward biochemical approach modified from two original published Ψ mapping protocols, BID-seq and PRAISE, to specifically identify pseudouridine modifications on mRNA transcripts from an HIV-1 infected T cell line. This protocol could readily be adapted for other viral infected cell types and additionally for populations of purified virions from infected cells.


Assuntos
HIV-1 , Pseudouridina , RNA Mensageiro , RNA Viral , Pseudouridina/metabolismo , Pseudouridina/genética , HIV-1/genética , Humanos , RNA Viral/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por HIV/virologia , Infecções por HIV/genética , Processamento Pós-Transcricional do RNA , Linhagem Celular
3.
Nucleic Acids Res ; 52(12): 7188-7210, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38686810

RESUMO

Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.


Assuntos
Proteínas de Ligação a DNA , Vírus da Influenza A , RNA Mensageiro , RNA Viral , Proteínas de Ligação a RNA , Replicação Viral , Humanos , Replicação Viral/genética , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vírus da Influenza A/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Células HEK293 , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Ligação Proteica , Animais
4.
Clin Exp Immunol ; 215(2): 177-189, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37917972

RESUMO

Patients with decompensated liver cirrhosis, in particular those classified as Childs-Pugh class C, are at increased risk of severe coronavirus disease-2019 (COVID-19) upon infection with severe acute respiratory coronavirus 2 (SARS-CoV-2). The biological mechanisms underlying this are unknown. We aimed to examine the levels of serum intrinsic antiviral proteins as well as alterations in the innate antiviral immune response in patients with decompensated liver cirrhosis. Serum from 53 SARS-CoV-2 unexposed and unvaccinated individuals, with decompensated liver cirrhosis undergoing assessment for liver transplantation, were screened using SARS-CoV-2 pseudoparticle and SARS-CoV-2 virus assays. The ability of serum to inhibit interferon (IFN) signalling was assessed using a cell-based reporter assay. Severity of liver disease was assessed using two clinical scoring systems, the Child-Pugh class and the MELD-Na score. In the presence of serum from SARS-CoV-2 unexposed patients with decompensated liver cirrhosis there was no association between SARS-CoV-2 pseudoparticle infection or live SARS-CoV-2 virus infection and severity of liver disease. Type I IFNs are a key component of the innate antiviral response. Serum from patients with decompensated liver cirrhosis contained elevated levels of auto-antibodies capable of binding IFN-α2b compared to healthy controls. High MELD-Na scores were associated with the ability of these auto-antibodies to neutralize type I IFN signalling by IFN-α2b but not IFN-ß1a. Our results demonstrate that neutralizing auto-antibodies targeting IFN-α2b are increased in patients with high MELD-Na scores. The presence of neutralizing type I IFN-specific auto-antibodies may increase the likelihood of viral infections, including severe COVID-19, in patients with decompensated liver cirrhosis.


Assuntos
COVID-19 , Interferon Tipo I , Hepatopatias , Transplante de Fígado , Humanos , Anticorpos , Cirrose Hepática
5.
Mol Ther Methods Clin Dev ; 29: 108-119, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37021039

RESUMO

Glycogen storage disease type Ia (GSD Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), associated with life-threatening hypoglycemia and long-term complications, including hepatocellular carcinoma formation. Gene replacement therapy fails to stably reverse G6Pase deficiency. We attempted genome editing using two adeno-associated virus vectors, one that expressed Staphylococcus aureus Cas9 protein and a second containing a donor transgene encoding G6Pase, in a dog model for GSD Ia. We demonstrated donor transgene integration in the liver of three adult-treated dogs accompanied by stable G6Pase expression and correction of hypoglycemia during fasting. Two puppies with GSD Ia were treated by genome editing that achieved donor transgene integration in the liver. Integration frequency ranged from 0.5% to 1% for all dogs. In adult-treated dogs, anti-SaCas9 antibodies were detected before genome editing, reflecting prior exposure to S. aureus. Nuclease activity was low, as reflected by a low percentage of indel formation at the predicted site of SaCas9 cutting that indicated double-stranded breaks followed by non-homologous end-joining. Thus, genome editing can integrate a therapeutic transgene in the liver of a large animal model, either early or later in life, and further development is warranted to provide a more stable treatment for GSD Ia.

6.
PLoS One ; 17(4): e0266412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436306

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Antivirais/farmacologia , Células Epiteliais/metabolismo , Humanos , Interferons/metabolismo , Interferons/farmacologia , Janus Quinases/metabolismo , SARS-CoV-2 , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
7.
Viruses ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215919

RESUMO

SARS-CoV-2 can efficiently infect both children and adults, albeit with morbidity and mortality positively associated with increasing host age and presence of co-morbidities. SARS-CoV-2 continues to adapt to the human population, resulting in several variants of concern (VOC) with novel properties, such as Alpha and Delta. However, factors driving SARS-CoV-2 fitness and evolution in paediatric cohorts remain poorly explored. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change in primary airway cell cultures derived from children. Through viral whole-genome sequencing, we explored changes in genetic diversity over time of two pre-VOC clinical isolates of SARS-CoV-2 during passage in paediatric well-differentiated primary nasal epithelial cell (WD-PNEC) cultures and in parallel, in unmodified Vero-derived cell lines. We identified a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near fixation within two passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with paediatric WD-PNECs showing a reduced diversity compared to Vero (E6) cells. However, mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike, while the strain with mutations in Nsp12 (T293I), Spike (P812R) and a truncation of Orf7a remained viable in WD-PNECs. Altogether, our work demonstrates that pre-VOC SARS-CoV-2 efficiently infects paediatric respiratory epithelial cells, and its evolution is restrained compared to Vero (E6) cells, similar to the case of adult cells. We highlight the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and ultimately fitness in human respiratory epithelium.


Assuntos
Evolução Molecular , Mucosa Respiratória/virologia , SARS-CoV-2/genética , Animais , Células Cultivadas , Criança , Chlorocebus aethiops , Genótipo , Humanos , Mutação , Nariz/citologia , Nariz/virologia , Fenótipo , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , Células Vero , Sequenciamento Completo do Genoma
8.
RNA ; 27(11): 1400-1411, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34376564

RESUMO

Pseudouridine (Ψ) is the most common noncanonical ribonucleoside present on mammalian noncoding RNAs (ncRNAs), including rRNAs, tRNAs, and snRNAs, where it contributes ∼7% of the total uridine level. However, Ψ constitutes only ∼0.1% of the uridines present on mRNAs and its effect on mRNA function remains unclear. Ψ residues have been shown to inhibit the detection of exogenous RNA transcripts by host innate immune factors, thus raising the possibility that viruses might have subverted the addition of Ψ residues to mRNAs by host pseudouridine synthase (PUS) enzymes as a way to inhibit antiviral responses in infected cells. Here, we describe and validate a novel antibody-based Ψ mapping technique called photo-crosslinking-assisted Ψ sequencing (PA-Ψ-seq) and use it to map Ψ residues on not only multiple cellular RNAs but also on the mRNAs and genomic RNA encoded by HIV-1. We describe 293T-derived cell lines in which human PUS enzymes previously reported to add Ψ residues to human mRNAs, specifically PUS1, PUS7, and TRUB1/PUS4, were inactivated by gene editing. Surprisingly, while this allowed us to assign several sites of Ψ addition on cellular mRNAs to each of these three PUS enzymes, Ψ sites present on HIV-1 transcripts remained unaffected. Moreover, loss of PUS1, PUS7, or TRUB1 function did not significantly reduce the level of Ψ residues detected on total human mRNA below the ∼0.1% level seen in wild-type cells, thus implying that the PUS enzyme(s) that adds the bulk of Ψ residues to human mRNAs remains to be defined.


Assuntos
Anticorpos Monoclonais/imunologia , Edição de Genes , Transferases Intramoleculares/metabolismo , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Hidroliases/imunologia , Hidroliases/metabolismo , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Transferases Intramoleculares/imunologia , Pseudouridina/imunologia , RNA Mensageiro/genética , RNA Viral/genética
9.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066974

RESUMO

The field of mRNA modifications has been steadily growing in recent years as technologies have improved and the importance of these residues became clear. However, a subfield has also arisen, specifically focused on how these modifications affect viral RNA, with the possibility that viruses can also be used as a model to best determine the role that these modifications play on cellular mRNAs. First, virologists focused on the most abundant internal mRNA modification, m6A, mapping this modification and elucidating its effects on the RNA of a wide range of RNA and DNA viruses. Next, less common RNA modifications including m5C, Nm and ac4C were investigated and also found to be present on viral RNA. It now appears that viral RNA is littered with a multitude of RNA modifications. In biological systems that are under constant evolutionary pressure to out compete both the host as well as newly arising viral mutants, it poses an interesting question about what evolutionary benefit these modifications provide as it seems evident, at least to this author, that these modifications have been selected for. In this review, I discuss how RNA modifications are identified on viral RNA and the roles that have now been uncovered for these modifications in regard to viral replication. Finally, I propose some interesting avenues of research that may shed further light on the exact role that these modifications play in viral replication.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Viral/química , RNA Viral/genética , Animais , Humanos
10.
Cell Host Microbe ; 26(2): 217-227.e6, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31415754

RESUMO

How the covalent modification of mRNA ribonucleotides, termed epitranscriptomic modifications, alters mRNA function remains unclear. One issue has been the difficulty of quantifying these modifications. Using purified HIV-1 genomic RNA, we show that this RNA bears more epitranscriptomic modifications than the average cellular mRNA, with 5-methylcytosine (m5C) and 2'O-methyl modifications being particularly prevalent. The methyltransferase NSUN2 serves as the primary writer for m5C on HIV-1 RNAs. NSUN2 inactivation inhibits not only m5C addition to HIV-1 transcripts but also viral replication. This inhibition results from reduced HIV-1 protein, but not mRNA, expression, which in turn correlates with reduced ribosome binding to viral mRNAs. In addition, loss of m5C dysregulates the alternative splicing of viral RNAs. These data identify m5C as a post-transcriptional regulator of both splicing and function of HIV-1 mRNA, thereby affecting directly viral gene expression.


Assuntos
5-Metilcitosina/farmacologia , Regulação Viral da Expressão Gênica , HIV-1/genética , RNA Viral/metabolismo , Transcriptoma , 5-Metilcitosina/metabolismo , Linfócitos T CD4-Positivos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Viral/efeitos dos fármacos , Vírion , Replicação Viral/efeitos dos fármacos
11.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186331

RESUMO

While it has been known for several years that viral RNAs are subject to the addition of several distinct covalent modifications to individual nucleotides, collectively referred to as epitranscriptomic modifications, the effect of these editing events on viral gene expression has been controversial. Here, we report the purification of murine leukemia virus (MLV) genomic RNA to homogeneity and show that this viral RNA contains levels of N6-methyladenosine (m6A), 5-methylcytosine (m5C), and 2'O-methylated (Nm) ribonucleotides that are an order of magnitude higher than detected on bulk cellular mRNAs. Mapping of m6A and m5C residues on MLV transcripts identified multiple discrete editing sites and allowed the construction of MLV variants bearing silent mutations that removed a subset of these sites. Analysis of the replication potential of these mutants revealed a modest but significant attenuation in viral replication in 3T3 cells in culture. Consistent with a positive role for m6A and m5C in viral replication, we also demonstrate that overexpression of the key m6A reader protein YTHDF2 enhances MLV replication, while downregulation of the m5C writer NSUN2 inhibits MLV replication.IMPORTANCE The data presented in the present study demonstrate that MLV RNAs bear an exceptionally high level of the epitranscriptomic modifications m6A, m5C, and Nm, suggesting that these each facilitate some aspect of the viral replication cycle. Consistent with this hypothesis, we demonstrate that mutational removal of a subset of these m6A or m5C modifications from MLV transcripts inhibits MLV replication in cis, and a similar result was also observed upon manipulation of the level of expression of key cellular epitranscriptomic cofactors in trans Together, these results argue that the addition of several different epitranscriptomic modifications to viral transcripts stimulates viral gene expression and suggest that MLV has therefore evolved to maximize the level of these modifications that are added to viral RNAs.


Assuntos
Adenosina/química , Citosina/química , Metilação de DNA , Vírus da Leucemia Murina/genética , Replicação Viral , Expressão Gênica , Genoma Viral , Vírus da Leucemia Murina/fisiologia , Metiltransferases/metabolismo , RNA Mensageiro , RNA Viral/genética
12.
Exp Eye Res ; 179: 75-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30365943

RESUMO

Pterygium is a pathological proliferative condition of the ocular surface, characterised by formation of a highly vascularised, fibrous tissue arising from the limbus that invades the central cornea leading to visual disturbance and, if untreated, blindness. Whilst chronic ultraviolet (UV) light exposure plays a major role in its pathogenesis, higher susceptibility to pterygium is observed in some families, suggesting a genetic component. In this study, a Northern Irish family affected by pterygium but reporting little direct exposure to UV was identified carrying a missense variant in CRIM1 NM_016441.2: c.1235 A > C (H412P) through whole-exome sequencing and subsequent analysis. CRIM1 is expressed in the developing eye, adult cornea and conjunctiva, having a role in cell differentiation and migration but also in angiogenesis, all processes involved in pterygium formation. We demonstrate elevated CRIM1 expression in pterygium tissue from additional individual Northern Irish patients compared to unaffected conjunctival controls. UV irradiation of HCE-S cells resulted in an increase in ERK phosphorylation and CRIM1 expression, the latter further elevated by the addition of the MEK1/2 inhibitor, U0126. Conversely, siRNA knockdown of CRIM1 led to decreased UV-induced ERK phosphorylation and increased BCL2 expression. Transient expression of the mutant H412P CRIM1 in corneal epithelial HCE-S cells showed that, unlike wild-type CRIM1, it was unable to reduce the cell proliferation, increased ERK phosphorylation and apoptosis induced through a decrease of BCL2 expression levels. We propose here a series of intracellular events where CRIM1 regulation of the ERK pathway prevents UV-induced cell proliferation and may play an important role in the in the pathogenesis of pterygium.


Assuntos
Epitélio Corneano/efeitos da radiação , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Pterígio/genética , Raios Ultravioleta , Adulto , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas , Células Cultivadas , Epitélio Corneano/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Linhagem , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pterígio/etiologia , Pterígio/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento Completo do Genoma
13.
RNA ; 24(9): 1172-1182, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29903832

RESUMO

While the issue of whether RNA interference (RNAi) ever forms part of the antiviral innate immune response in mammalian somatic cells remains controversial, there is considerable evidence demonstrating that few, if any, viral small interfering RNAs (siRNAs) are produced in infected cells. Moreover, inhibition of RNAi by mutational inactivation of key RNAi factors, such as Dicer or Argonaute 2, fails to enhance virus replication. One potential explanation for this lack of inhibitory effect is that mammalian viruses encode viral suppressors of RNAi (VSRs) that are so effective that viral siRNAs are not produced in infected cells. Indeed, a number of mammalian VSRs have been described, of which the most prominent is the influenza A virus (IAV) NS1 protein, which has not only been reported to inhibit RNAi in plants and insects but also to prevent the production of viral siRNAs in IAV-infected human cells. Here, we confirm that an IAV mutant lacking NS1 indeed differs from wild-type IAV in that it induces the production of readily detectable levels of Dicer-dependent viral siRNAs in infected human cells. However, we also demonstrate that these siRNAs have little if any inhibitory effect on IAV gene expression. This is likely due, at least in part, to their inefficient loading into RNA-induced silencing complexes.


Assuntos
RNA Helicases DEAD-box/genética , Vírus da Influenza A/fisiologia , Interferência de RNA , Ribonuclease III/genética , Proteínas não Estruturais Virais/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Mutação , RNA Viral/genética , Análise de Sequência de RNA , Replicação Viral
14.
PLoS Pathog ; 14(2): e1006919, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447282

RESUMO

Polyomaviruses are a family of small DNA tumor viruses that includes several pathogenic human members, including Merkel cell polyomavirus, BK virus and JC virus. As is characteristic of DNA tumor viruses, gene expression in polyomaviruses is temporally regulated into an early phase, consisting of the viral regulatory proteins, and a late phase, consisting of the viral structural proteins. Previously, the late transcripts expressed by the prototypic polyomavirus simian virus 40 (SV40) were reported to contain several adenosines bearing methyl groups at the N6 position (m6A), although the precise location of these m6A residues, and their phenotypic effects, have not been investigated. Here, we first demonstrate that overexpression of the key m6A reader protein YTHDF2 induces more rapid viral replication, and larger viral plaques, in SV40 infected BSC40 cells, while mutational inactivation of the endogenous YTHDF2 gene, or the m6A methyltransferase METTL3, has the opposite effect, thus suggesting a positive role for m6A in the regulation of SV40 gene expression. To directly test this hypothesis, we mapped sites of m6A addition on SV40 transcripts and identified two m6A sites on the viral early transcripts and eleven m6A sites on the late mRNAs. Using synonymous mutations, we inactivated the majority of the m6A sites on the SV40 late mRNAs and observed that the resultant viral mutant replicated more slowly than wild type SV40. Alternative splicing of SV40 late mRNAs was unaffected by the reduction in m6A residues and our data instead suggest that m6A enhances the translation of viral late transcripts. Together, these data argue that the addition of m6A residues to the late transcripts encoded by SV40 plays an important role in enhancing viral gene expression and, hence, replication.


Assuntos
Adenosina/análogos & derivados , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , Vírus 40 dos Símios/genética , Proteínas Estruturais Virais/genética , Replicação Viral/genética , Células A549 , Adenosina/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Regulação Viral da Expressão Gênica , Genes Virais , Células HEK293 , Humanos , Metilação , RNA Viral/metabolismo , Vírus 40 dos Símios/metabolismo , Células Vero
15.
Sci Rep ; 7(1): 16174, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170458

RESUMO

CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S. pyogenes Cas9 and sgRNA to the corneal epithelium by intrastromal injection and acheived long-term knockdown of a corneal epithelial reporter gene, demonstrating gene disruption via NHEJ in vivo. In addition, we used TGFBI corneal dystrophies as a model of autosomal dominant disease to assess the use of CRISPR/Cas9 in two allele-specific systems, comparing cleavage using a SNP-derived PAM to a guide specific approach. In vitro, cleavage via a SNP-derived PAM was found to confer stringent allele-specific cleavage, while a guide-specific approach lacked the ability to distinguish between the wild-type and mutant alleles. The failings of the guide-specific approach highlights the necessity for meticulous guide design and assessment, as various degrees of allele-specificity are achieved depending on the guide sequence employed. A major concern for the use of CRISPR/Cas9 is its tendency to cleave DNA non-specifically at "off-target" sites. Confirmation that S. pyogenes Cas9 lacks the specificity to discriminate between alleles differing by a single base-pair regardless of the position in the guide is demonstrated.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Alelos , Animais , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/terapia , Reparo do DNA por Junção de Extremidades/genética , Camundongos , Camundongos Mutantes , Mutação/genética , Streptococcus pyogenes/enzimologia
17.
Cell Host Microbe ; 22(3): 377-386.e5, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28910636

RESUMO

Many viral RNAs are modified by methylation of the N6 position of adenosine (m6A). m6A is thought to regulate RNA splicing, stability, translation, and secondary structure. Influenza A virus (IAV) expresses m6A-modified RNAs, but the effects of m6A on this segmented RNA virus remain unclear. We demonstrate that global inhibition of m6A addition inhibits IAV gene expression and replication. In contrast, overexpression of the cellular m6A "reader" protein YTHDF2 increases IAV gene expression and replication. To address whether m6A residues modulate IAV RNA function in cis, we mapped m6A residues on the IAV plus (mRNA) and minus (vRNA) strands and used synonymous mutations to ablate m6A on both strands of the hemagglutinin (HA) segment. These mutations inhibited HA mRNA and protein expression while leaving other IAV mRNAs and proteins unaffected, and they also resulted in reduced IAV pathogenicity in mice. Thus, m6A residues in IAV transcripts enhance viral gene expression.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , RNA Viral/genética , Replicação Viral , Animais , Metilação de DNA , Epigênese Genética , Feminino , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/metabolismo , Metilação , Camundongos Endogâmicos C57BL , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
18.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28250115

RESUMO

Although it has been known for over 40 years that eukaryotic mRNAs bear internal base modifications, it is only in the last 5 years that the importance of these modifications has begun to come into focus. The most common mRNA modification, the addition of a methyl group to the N6 position of adenosine (m6A), has been shown to affect splicing, translation, and stability, and m6A is also essential for embryonic development in organisms ranging from plants to mice. While all viral transcripts examined so far have been found to be extensively m6A modified, the role, if any, of m6A in regulating viral gene expression and replication was previously unknown. However, recent data generated using HIV-1 as a model system strongly suggest that sites of m6A addition not only are evolutionarily conserved but also enhance virus replication. It is therefore likely that the field of viral epitranscriptomics, which can be defined as the study of functionally relevant posttranscriptional modifications of viral RNA transcripts that do not change the nucleotide sequence of that RNA, is poised for a major expansion in scientific interest and may well fundamentally change our understanding of how viral replication is regulated.


Assuntos
Adenosina/análogos & derivados , Vírus de DNA/genética , Processamento Pós-Transcricional do RNA/genética , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Viral/genética , Adenosina/genética , HIV-1/genética , Humanos , Metilação , Metiltransferases/metabolismo
19.
Hum Mol Genet ; 25(6): 1176-91, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26758872

RESUMO

Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.


Assuntos
Distrofia Corneana Epitelial Juvenil de Meesmann/genética , Queratina-12/genética , Queratina-3/genética , Mutação de Sentido Incorreto , Adulto , Animais , Apoptose/genética , Modelos Animais de Doenças , Éxons , Feminino , Heterozigoto , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Linhagem , Resposta a Proteínas não Dobradas
20.
Invest Ophthalmol Vis Sci ; 56(8): 4653-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26207300

RESUMO

PURPOSE: Transforming growth factor beta-induced (TGFBI)-related dystrophies constitute the most common heritable forms of corneal dystrophy worldwide. However, other than the underlying genotypes of these conditions, a limited knowledge exists of the exact pathomechanisms of these disorders. This study expands on our previous research investigating dystrophic stromal aggregates, with the aim of better elucidating the pathomechanism of two conditions arising from the most common TGFBI mutations: granular corneal dystrophy type 1 (GCD1; R555W) and lattice corneal dystrophy type 1 (LCD1; R124C). METHODS: Patient corneas with GCD1 and LCD1 were stained with hematoxylin and eosin and Congo red to visualize stromal nonamyloid and amyloid deposits, respectively. Laser capture microdissection was used to isolate aggregates and extracted protein was analyzed by mass spectrometry. Proteins were identified and their approximate abundances were determined. Spectra of TGFBIp peptides were also recorded and quantified. RESULTS: In total, three proteins were found within GCD1 aggregates that were absent in the healthy control corneal tissue. In comparison, an additional 18 and 24 proteins within stromal LCD1 and Bowman's LCD1 deposits, respectively, were identified. Variances surrounding the endogenous cleavage sites of TGFBIp were also noted. An increase in the number of residues experiencing cleavage was observed in both GCD1 aggregates and LCD1 deposits. CONCLUSIONS: The study reveals previously unknown differences between the protein composition of GCD1 and LCD1 aggregates, and confirms the presence of the HtrA1 protease in LCD1-amyloid aggregates. In addition, we find mutation-specific differences in the processing of mutant TGFBIp species, which may contribute to the variable phenotypes noted in TGFBI-related dystrophies.


Assuntos
Distrofias Hereditárias da Córnea/genética , Substância Própria/metabolismo , DNA/genética , Mutação , Fator de Crescimento Transformador beta/genética , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/patologia , Substância Própria/patologia , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Linhagem , Proteômica/métodos , Fator de Crescimento Transformador beta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...