Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10756, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750800

RESUMO

Congenital heart disease (CHD) is often associated with fetal growth abnormalities. During the first trimester of pregnancy, the heart and placenta develop concurrently, and share key developmental pathways. It is hypothesized that defective morphogenesis of either organ is synergistically linked. However, many studies determined to understand the mechanisms behind CHD overlook the contribution of the placenta. In this study, we aimed to identify commonly expressed genes between first trimester heart and placenta cells using two publicly available single cell sequencing databases. Using a systematic computational approach, we identified 328 commonly expressed genes between heart and placenta endothelial cells and enrichment in pathways including Vasculature Development (GO:0001944, FDR 2.90E-30), and Angiogenesis (GO:0001525, FDR 1.18E-27). We also found, in comparison with fetal heart endothelial cells, 197 commonly expressed genes with placenta extravillous trophoblasts, 128 with cytotrophoblasts and 80 with syncytiotrophoblasts, and included genes such as FLT1, GATA2, ENG and CDH5. Finally, comparison of first trimester cardiomyocytes and placenta cytotrophoblasts revealed 53 commonly expressed genes and enrichment in biological processes integral to cellular function including Cellular Respiration (GO:0045333; FDR 5.05E-08), Ion Transport (GO:0006811; FDR 2.08E-02), and Oxidation-Reduction Process (GO:0055114; FDR 1.58E-07). Overall, our results identify specific genes and cellular pathways common between first trimester fetal heart and placenta cells which if disrupted may concurrently contribute to the developmental perturbations resulting in CHD.


Assuntos
Células Endoteliais , Cardiopatias Congênitas , Feminino , Coração Fetal , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Humanos , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/genética , Trofoblastos/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502440

RESUMO

Congenital heart defects (CHD) affect approximately 1% of all live births, and often require complex surgeries at birth. We have previously demonstrated abnormal placental vascularization in human placentas from fetuses diagnosed with CHD. Hand1 has roles in both heart and placental development and is implicated in CHD development. We utilized two conditionally activated Hand1A126fs/+ murine mutant models to investigate the importance of cell-specific Hand1 on placental development in early (Nkx2-5Cre) and late (Cdh5Cre) pregnancy. Embryonic lethality occurred in Nkx2-5Cre/Hand1A126fs/+ embryos with marked fetal demise occurring after E10.5 due to a failure in placental labyrinth formation and therefore the inability to switch to hemotrophic nutrition or maintain sufficient oxygen transfer to the fetus. Labyrinthine vessels failed to develop appropriately and vessel density was significantly lower by day E12.5. In late pregnancy, the occurrence of Cdh5Cre+;Hand1A126fs/+ fetuses was reduced from 29% at E12.5 to 20% at E18.5 and remaining fetuses exhibited reduced fetal and placental weights, labyrinth vessel density and placenta angiogenic factor mRNA expression. Our results demonstrate for the first time the necessity of Hand1 in both establishment and remodeling of the exchange area beyond early pregnancy and in patterning vascularization of the placental labyrinth crucial for maintaining pregnancy and successful fetal growth.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Placenta/irrigação sanguínea , Placentação , Animais , Perda do Embrião , Feminino , Morte Fetal , Cardiopatias Congênitas/etiologia , Masculino , Camundongos , Gravidez
3.
J Cyst Fibros ; 19(5): 815-822, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593509

RESUMO

BACKGROUND: Cystic fibrosis (CF) patients develop severe lung disease including chronic airway infections, neutrophilic inflammation, and progressive fibrotic remodeling in airways. However, cellular and molecular processes that regulate excessive collagen deposition in airways in these patients remain unclear. Fibrocytes are bone marrow (BM)-derived mesenchymal cells that express the hematopoietic cell marker CD45, and mesenchymal cell markers and implicated in collagen deposition in several fibrotic diseases. It is unknown whether fibrocytes accumulate in the lungs of CF patients, so the current study evaluates the presence of fibrocytes in the fibrotic lesions of airways in explanted CF lungs compared to non-CF unused donor lungs (control). METHODS: We used immunofluorescence staining to determine if fibrocytes accumulate in explanted CF lungs compared to healthy donor lungs. Simultaneously, we evaluated cells collected by bronchoalveolar lavage (BAL) in CF patients using multi-color flow cytometry. Finally, we analyzed transcripts differentially expressed in fibrocytes isolated from the explanted CF lungs compared to control to assess fibrocyte-specific pro-fibrotic gene networks. RESULTS: Our findings demonstrate fibrocyte accumulation in CF lungs compared to non-CF lungs. Additionally, fibrocytes were detected in the BAL of all CF children. Transcriptomic analysis of fibrocytes identified dysregulated genes associated with fibrotic remodeling in CF lungs. CONCLUSIONS: With significantly increased fibrocytes that show increased expression of pro-fibrotic gene transcripts compared to control, our findings suggest an intervention for fibrotic remodeling as a potential therapeutic target in CF.


Assuntos
Fibrose Cística/patologia , Pulmão/patologia , Células-Tronco Mesenquimais/fisiologia , Adolescente , Estudos de Casos e Controles , Técnicas de Cultura de Células , Criança , Pré-Escolar , Fibrose Cística/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Pulmão/metabolismo , Masculino
4.
Front Physiol ; 9: 1045, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131711

RESUMO

Congenital heart disease (CHD) is the most common birth defect, affecting ~1% of all live births (van der Linde et al., 2011). Despite improvements in clinical care, it is the leading cause of infant mortality related to birth defects (Yang et al., 2006) and burdens survivors with significant morbidity (Gilboa et al., 2016). Furthermore, CHD accounts for the largest proportion (26.7%) of birth defect-associated hospitalization costs-up to $6.1 billion in 2013 (Arth et al., 2017). Yet after decades of research with a primary focus on genetic etiology, the underlying cause of these defects remains unknown in the majority of cases (Zaidi and Brueckner, 2017). Unexplained CHD may be secondary to undiscovered roles of noncoding genetic, epigenetic, and environmental factors, among others (Russell et al., 2018). Population studies have recently demonstrated that pregnancies complicated by CHD also carry a higher risk of developing pathologies associated with an abnormal placenta including growth disturbances (Puri et al., 2017), preeclampsia (Auger et al., 2015; Brodwall et al., 2016), preterm birth (Laas et al., 2012), and stillbirth (Jorgensen et al., 2014). Both the heart and placenta are vascular organs and develop concurrently; therefore, shared pathways almost certainly direct the development of both. The involvement of placental abnormalities in congenital heart disease, whether causal, commensurate or reactive, is under investigated and given the common developmental window and shared developmental pathways of the heart and placenta and concurrent vasculature development, we propose that further investigation combining clinical data, in vitro, in vivo, and computer modeling is fundamental to our understanding and the potential to develop therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...