Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 14(22): 4591-4602, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785441

RESUMO

Poly(vinylidene difluoride) (PVDF) displays attractive ferroelectric/piezoelectric properties and its polar ß-crystals are specifically targeted for achieving electroactive applications. However, their direct crystallization from the melt state represents a challenging task that has never been addressed using melt-state processes. The use of poly(methyl methacrylate) (PMMA) is herein investigated to promote the PVDF polar ß-phase using melt-blending and extrusion-calendering technologies. The presence of the ß-phase is here confirmed by ATR-FTIR and WAXS experiments with blends at a PMMA content as low as 5 wt%. The key role of PMMA for the ß-phase crystallization from the melt state was unambiguously highlighted with the help of Flash DSC experiments in non-isothermal cooling mode from the melt state. PMMA is able to efficiently shift the α-to-ß crystal transition to lower cooling rates (>100-200 °C s-1), making the achievement of the PVDF polar ß-phase for these blends compatible with conventional processing tools. A crystal phase diagram is proposed for the PVDF/PMMA blends to highlight the dual effects of both PMMA and cooling rate on the PVDF crystallization during melt-processing. Ferroelectric properties were even observed for the blends containing PMMA up to 10 wt% with the highest remanent polarization obtained at 5 wt% PMMA. After 10 wt% PMMA, a progressive transition from ferroelectric to pseudo-linear dielectric behavior is observed more likely due to the presence of PMMA in the interlamellar amorphous phase of the polar PVDF spherulites as shown by SAXS experiments. In this work, we successfully demonstrated that PMMA plays a key role in the crystallization of PVDF polar crystals from the melt state, enabling large-scale and continuous extrusion processing of PVDF-based materials with attractive dielectric properties for sensing and harvesting applications.

2.
Ultrasonics ; 79: 96-104, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28458063

RESUMO

Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters.

3.
J Colloid Interface Sci ; 394: 545-53, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23261128

RESUMO

ZnO nanorods were grown on microfibers of Polyethylene terephthalate (PET) fabric by seeding method to develop hierarchical roughness structure. XRD and XPS analysis show the presence of crystalline ZnO and chemical Zn species at the fiber surface at each stage of the process. Five series of samples with different seed concentrations have been realized, and their surface morphology and topography were characterized by AFM and SEM. Increasing seed concentrations lead to samples with superhydrophilic properties. Not only the water contact angle at fabric surface tends to zero but also the water capillary diffusion inside fabric is faster. Nanostructuration affects the structure inside the fabric, and further experiments with decane liquid have been made to get a better understanding of this effect. To study the superhydrophobicity, nanorods treated samples were modified with octadecyltrimethoxysilane (ODS) by two method; solution deposition and vapor deposition. The superhydrophobicity was characterized by measuring the water contact angle and water sliding angle with 5 µl water droplet. The samples modified with ODS by vapor deposition showed higher water contact angles and low water sliding angle than the ones modified with solution method. The lotus effect has been well correlated with the surface morphology of the nanorods structured fibers. The application of the Cassie-Baxter equation is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...