Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Surg ; 51(8): 1321-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26718832

RESUMO

BACKGROUND/AIM: It has been proposed that androgens control inguinoscrotal testicular descent via release of calcitonin gene-related peptide (CGRP) from a masculinised genitofemoral nerve (GFN). As there are androgen receptors in the inguinoscrotal fat pad (IFP) during the window of androgen sensitivity (E14-17 in mouse embryos), we tested the hypothesis that neurotrophins in the IFP may masculinise the sensory fibers of the GFN supplying the gubernaculum and IFP prior to gubernacular migration. METHODS: Androgen-receptor knockout (ARKO) and wild-type (WT) mouse embryos were collected at E17, with ethical approval (AEC 734). Sagittal sections of IFP, mammary area and bulbocavernosus (BC) muscle were processed for standard histology and fluorescent immunohistochemistry for ciliary neurotrophic factor (CNTF), ciliary neurotrophic factor receptor (CNTFR) and cell nuclei (DAPI). RESULTS: In the ARKO mouse CNTFR immunoreactivity (CNTFR-IR) was increased in the IFP but decreased in BC. Perinuclear staining of CNTF-IR was seen in mouse sciatic nerve but only weakly in IFP. In the mammary area, also supplied by GFN, there were no differences in IR staining. CONCLUSION: This study found CNTFR-IR in the IFP was negatively regulated by androgen, suggesting that CNTF signaling may be suppressed in GFN sensory nerves to enable CGRP expression for regulating gubernacular migration in the male, but not the female. The indirect action of androgen via the GFN required for testicular descent may be one of the sites of anomalies in the putative multifactorial cause of cryptorchidism.


Assuntos
Fator Neurotrófico Ciliar/fisiologia , Criptorquidismo/fisiopatologia , Receptor do Fator Neutrófico Ciliar/fisiologia , Receptores Androgênicos/fisiologia , Testículo/fisiologia , Testículo/fisiopatologia , Androgênios/fisiologia , Animais , Criptorquidismo/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Testículo/inervação
3.
Pediatr Surg Int ; 31(4): 317-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25690562

RESUMO

Testicular descent occurs in two morphologically distinct phases, each under different hormonal control from the testis itself. The first phase occurs between 8 and 15 weeks when insulin-like hormone 3 (Insl3) from the Leydig cells stimulates the gubernaculum to swell, thereby anchoring the testis near the future inguinal canal as the foetus grows. Testosterone causes regression of the cranial suspensory ligament to augment the transabdominal phase. The second, or inguinoscrotal phase, occurs between 25 and 35 weeks, when the gubernaculum bulges out of the external ring and migrates to the scrotum, all under control of testosterone. However, androgen acts mostly indirectly via the genitofemoral nerve (GFN), which produces calcitonin gene-related peptide (CGRP) to control the direction of migration. In animal models the androgen receptors are in the inguinoscrotal fat pad, which probably produces a neurotrophin to masculinise the GFN sensory fibres that regulate gubernacular migration. There is little direct evidence that this same process occurs in humans, but CGRP can regulate closure of the processus vaginalis in inguinal hernia, confirming that the GFN probably mediates human testicular descent by a similar mechanism as seen in rodent models. Despite increased understanding about normal testicular descent, the common causes of cryptorchidism remain elusive.


Assuntos
Canal Inguinal/anatomia & histologia , Testículo/anatomia & histologia , Testículo/fisiologia , Criptorquidismo/etiologia , Criptorquidismo/fisiopatologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...