Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(5): e1010470, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605011

RESUMO

Zoonotic simian foamy viruses (SFV) establish lifelong infection in their human hosts. Despite repeated transmission of SFV from nonhuman primates to humans, neither transmission between human hosts nor severe clinical manifestations have been reported. We aim to study the immune responses elicited by chronic infection with this retrovirus and previously reported that SFV-infected individuals generate potent neutralizing antibodies that block cell infection by viral particles. Here, we assessed whether human plasma antibodies block SFV cell-to-cell transmission and present the first description of cell-to-cell spreading of zoonotic gorilla SFV. We set-up a microtitration assay to quantify the ability of plasma samples from 20 Central African individuals infected with gorilla SFV and 9 uninfected controls to block cell-associated transmission of zoonotic gorilla SFV strains. We used flow-based cell cytometry and fluorescence microscopy to study envelope protein (Env) localization and the capacity of plasma antibodies to bind to infected cells. We visualized the cell-to-cell spread of SFV by real-time live imaging of a GFP-expressing prototype foamy virus (CI-PFV) strain. None of the samples neutralized cell-associated SFV infection, despite the inhibition of cell-free virus. We detected gorilla SFV Env in the perinuclear region, cytoplasmic vesicles and at the cell surface. We found that plasma antibodies bind to Env located at the surface of cells infected with primary gorilla SFV strains. Extracellular labeling of SFV proteins by human plasma samples showed patchy staining at the base of the cell and dense continuous staining at the cell apex, as well as staining in the intercellular connections that formed when previously connected cells separated from each other. In conclusion, SFV-specific antibodies from infected humans do not block cell-to-cell transmission, at least in vitro, despite their capacity to bind to the surface of infected cells. Trial registration: Clinical trial registration: www.clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT03225794/.


Assuntos
Hominidae , Infecções por Retroviridae , Vírus Espumoso dos Símios , Spumavirus , Animais , Vírus de DNA , Gorilla gorilla , Humanos
2.
Pathogens ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578197

RESUMO

In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000-2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.

3.
Virology ; 541: 25-31, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826843

RESUMO

Simian foamy viruses (SFVs) are complex retroviruses that are widespread throughout nonhuman primates. SFVs can also be transmitted to humans, mostly through bites. We previously observed that primary zoonotic gorilla SFV strains grow much more slowly than laboratory-adapted chimpanzee strains. Here, we tested the hypothesis that the growth of SFV is limited by interferon (IFN) using inhibitors of cellular pathways involved in the induction or action of type I IFN. Inhibitors of JAK1/2 (Ruxolitinib) and TBK-1 (BX795) led to a 2- to 4-fold higher percentage of cells infected with zoonotic gorilla SFVs but did not affect the replication of laboratory-adapted chimpanzee SFVs. IKK2 inhibitors (TPCA-1 and BMS345541) had no effect on any of the SFV strains. In conclusion, the addition of molecules that inhibit the type I IFN response to the culture medium can be used as a simple and efficient method to enhance the replication of zoonotic gorilla SFVs.


Assuntos
Interferon Tipo I/antagonistas & inibidores , Vírus Espumoso dos Símios/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Gorilla gorilla , Humanos , Quinase I-kappa B/antagonistas & inibidores , Células K562 , Nitrilas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Vírus Espumoso dos Símios/fisiologia , Tiofenos/farmacologia
4.
PLoS Pathog ; 14(10): e1007293, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296302

RESUMO

Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses (SFVs) are complex retroviruses which are currently spilling over to humans. Replication-competent SFVs persist over the lifetime of their human hosts, without spreading to secondary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to perform an in-depth characterization of neutralizing antibodies raised by humans infected with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and laboratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was identified by direct sequencing of the env gene amplified from the buffy coat with genotype-specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target the dimorphic portion of the envelope protein surface domain. Epitopes recognized by neutralizing antibodies have been conserved during the cospeciation of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples of SFV-infected humans was statistically associated with smaller SFV-related hematological changes. The neutralization patterns provide evidence for persistent expression of viral proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised against zoonotic SFV target immunodominant and conserved epitopes located in the receptor binding domain. These properties support their potential role in restricting the spread of SFV in the human population.


Assuntos
Anticorpos Neutralizantes/sangue , Vetores de Doenças , Epitopos/imunologia , Hominidae/imunologia , Infecções por Retroviridae/transmissão , Vírus Espumoso dos Símios/isolamento & purificação , Proteínas do Envelope Viral/imunologia , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Gorilla gorilla/virologia , Hominidae/sangue , Hominidae/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Pan troglodytes/virologia , Infecções por Retroviridae/virologia
5.
Virol J ; 13: 7, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742789

RESUMO

BACKGROUND: Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment. The feather follicle epithelium is the sole tissue in which those infectious particles are produced and no in vitro cell-systems can support this highly efficient morphogenesis. We previously characterized embryonic stem-cell-derived keratinocytes, showing they display a marker-gene profile similar to skin keratinocytes, and therefore we tested their susceptibility to Marek's disease virus infection. FINDINGS: We show herein that keratinocytes derived from chicken embryonic stem-cells are fully permissive to the replication of either non-pathogenic or pathogenic Marek's disease viruses. All viruses replicated on all three keratinocyte lines and kinetics of viral production as well as viral loads were similar to those obtained on primary cells. Morphogenesis studies were conducted on infected keratinocytes and on corneocytes, showing that all types of capsids/virions were present inside the cells, but extracellular viruses were absent. CONCLUSIONS: The keratinocyte lines are the first epithelial cell-line showing ectodermal specific markers supporting Marek's disease virus replication. In this in vitro model the replication lead to the production of cell-associated viral progeny. Further work will be devoted to the study of relationship between 3D differentiation of keratinocytes and Marek's disease virus replication.


Assuntos
Células-Tronco Embrionárias/citologia , Queratinócitos/citologia , Queratinócitos/virologia , Mardivirus/fisiologia , Replicação Viral , Animais , Células Cultivadas , Embrião de Galinha , Mardivirus/ultraestrutura , Doença de Marek/virologia
6.
Viruses ; 7(10): 5476-88, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26506370

RESUMO

Puumala virus (PUUV) is the agent of nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS) in Europe. NE incidence presents a high spatial variation throughout France, while the geographical distribution of the wild reservoir of PUUV, the bank vole, is rather continuous. A missing piece of the puzzle is the current distribution and the genetic variation of PUUV in France, which has been overlooked until now and remains poorly understood. During a population survey, from 2008 to 2011, bank voles were trapped in eight different forests of France located in areas known to be endemic for NE or in area from where no NE case has been reported until now. Bank voles were tested for immunoglobulin (Ig)G ELISA serology and two seropositive animals for each of three different areas (Ardennes, Jura and Orleans) were then subjected to laboratory analyses in order to sequence the whole S, M and L segments of PUUV. Phylogenetic analyses revealed that French PUUV isolates globally belong to the central European (CE) lineage although isolates from Ardennes are clearly distinct from those in Jura and Orleans, suggesting a different evolutionary history and origin of PUUV introduction in France. Sequence analyses revealed specific amino acid signatures along the N protein, including in PUUV from the Orleans region from where NE in humans has never been reported. The relevance of these mutations in term of pathophysiology is discussed.


Assuntos
Arvicolinae/virologia , Reservatórios de Doenças , Genoma Viral , Virus Puumala/classificação , Virus Puumala/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA , Animais , Análise por Conglomerados , Feminino , França , Masculino , Dados de Sequência Molecular , Filogeografia , Virus Puumala/genética , Homologia de Sequência
7.
Stem Cell Res ; 14(2): 224-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25702531

RESUMO

A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.


Assuntos
Células-Tronco Embrionárias/citologia , Queratinócitos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Células Cultivadas , Galinhas , Células-Tronco Embrionárias/metabolismo , Humanos , Queratinócitos/metabolismo
8.
Vet Res ; 45: 36, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24694064

RESUMO

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.


Assuntos
Galinhas , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/patologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Dermatopatias Virais/veterinária , Animais , Herpesvirus Galináceo 2/crescimento & desenvolvimento , Doença de Marek/fisiopatologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/fisiopatologia , Dermatopatias Virais/patologia , Dermatopatias Virais/fisiopatologia , Dermatopatias Virais/virologia
9.
Virologie (Montrouge) ; 18(2): 75-86, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065877

RESUMO

Marek's disease virus (MDV) is a highly contagious herpesvirus which induces immunosuppression and T-cell lymphoma in chicken. This virus still circulates in flocks despite forty years of vaccination, with important economical losses at the world level. The feather follicles, which allow feathers morphogenesis and their anchor into the skin, are the unique known source of MDV excretion. This tissue causes environment contamination and MDV bird-to-bird transmission. Epithelial cells from the feather follicles are the only identified cells, in which high levels of infectious mature virions are visible by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and poultry dust are today considered as excellent materials in order to follow vaccination, circulation of pathogenic viruses and environment contamination. This article aims at summarizing the current knowledge on MDV-skin interactions and at suggesting new approaches which could solve important questions on MDV biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...