Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 286: 112114, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33618323

RESUMO

The biological treatment of mine drainage (MD) using sulfate-reducing bacteria (SRB) is a technology in growing exploitation. The use of by-products as sources of electrons can make this treatment more environmentally and economically advantageous. However, the high chemical oxygen demand (COD) and the presence of recalcitrant molecules can lead to the accumulation of metabolic intermediates that acidify the system, thus interrupting the treatment. Besides, the adaptation of the inoculum to the establishment of sulfidogenesis with MD and by-product may be slow. This study aimed to investigate prompt adaptation and operation strategies that do not require additives to enable the sulfidogenic process to occur while maintaining a pH close to neutrality. The sources of electrons tested were trub (brewery residue) and crude glycerol - CG (residue from the biodiesel production). The inoculum from a methanogenic reactor was stored with a real MD for a month. The adapted inoculum was applied in a batch reactor for 168 h of hydraulic detention time, and promoted 75.8 ± 4.3% of sulfate removal from an MD with 3756.4 ± 258 mg.L-1 of sulfate using CG in a COD/SO42- ratio of 3 ratio. With higher initial substrate concentrations, acidification occurred and the treatment was interrupted. Using trub instead of CG, the acidification occurred at a COD/SO42- ratio of 3. Acidification was prevented and the best efficiencies in sulfate removal were obtained when the amount of substrate corresponding to COD/SO42- ratio of 3 was fractioned into equal parts and added over six days in the CG reactor. It was achieved 94.15 ± 1.76% of sulfate removal. With trub, the same procedure in which this COD was divided into seven parts, and resulted in a sulfate removal of 88.49 ± 1.02%. The removal of metals and metalloids were greater than 94.5% in all the systems in which the substrate supply was made fractionally, and the effluent generated presented alkalinity between 3370 and 4242 mg CaCO3.L-1, and pH between 6.8 and 7. The method of adaptation and operation applied allowed the realization of a MD treatment with quick establishment of sulfidogenesis and without the use of neutralizing additives. Finally, the effluent presented characteristics considered favorable for a later stage of post-treatment of the effluent with methane generation.


Assuntos
Reatores Biológicos , Sulfatos , Análise da Demanda Biológica de Oxigênio , Metais , Metano , Eliminação de Resíduos Líquidos
2.
Environ Technol ; 41(10): 1232-1244, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30226794

RESUMO

Recycling of end-of-life polyamide-based thin film composite (TFC) membranes is gaining interest in academic and industrial contexts. The effects of chlorine exposure on the performance of polyamide membranes result in an increase in membrane permeability, whereas the solute rejection decreases. Therefore, the controlled chemical conversion of old reverse osmosis (RO) membranes has been reported by some previous papers. The objectives of this study were to assess recycling of old nanofiltration (NF) membrane, to assess the performance of the recycled membranes for a river water treatment application, and to conduct preliminary cost evaluations. Recycling technique consisted of exposing the membrane to a sodium hypochlorite solution in order to remove its polyamide layer and conversion to a low-pressure membrane. The work conducted bench scale and long-time pilot tests, and the recycled membranes showed a low fouling tendency. The difference between some results in bench- and pilot scale underscores the importance of evaluating design parameters using pilot scale units. Based on the cost analysis, the total cost of chemical recycling end-of-line NF membranes for a river water treatment is approximately 1.1% of the cost of using a new UF membrane. There is a great potential in using recycled membranes for rivers water treatments.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Osmose , Reciclagem
3.
Water Sci Technol ; 76(3-4): 605-622, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759443

RESUMO

The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.


Assuntos
Membranas Artificiais , Reciclagem , Purificação da Água/métodos , Filtração , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nylons/química , Osmose , Permeabilidade , Espectrometria por Raios X , Água/química
4.
Waste Manag Res ; 35(5): 456-470, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28097920

RESUMO

The reverse osmosis (RO) technology for desalination and demineralization serves the global water crisis context, both technically and economically, and its market is growing. However, RO membranes have a limited life-cycle and are often disposed of in landfills. The impacts caused by the disposal of thousands of tonnes per annum of RO membranes have grown dramatically around the world. Waste prevention should have a high priority and take effect before the end-of-life phase of a product is reached. In this review, a summary is presented of the main advances in the performance of the RO technology and the membrane lifespan. Afterwards, this paper reviews the most important relevant literature and summarizes the key findings of the research on reusing and recycling the discarded modules for the purpose of extending the life-cycle of the RO membranes. In addtion, there are some recent researches that indicated recycling RO membranes for use by the microfiltration or ultrafiltration separation processes is a promising solution to the disposal problem. However, there are many gaps and differences in procedures and results. This article also discusses and brings to light key parameters involved and controversies about oxidative treatment of discarded RO membranes.


Assuntos
Osmose , Eliminação de Resíduos Líquidos , Filtração , Membranas Artificiais , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...