Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 4(5): 846-853, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30804547

RESUMO

Fungi are the primary agents of terrestrial decomposition, yet our understanding of fungal biogeography lags far behind that of plants, animals and bacteria. Here, we use a trait-based approach to quantify the niches of 23 species of basidiomycete wood decay fungi from across North America, and explore the linkages among functional trait expression, climate and phylogeny. Our analysis reveals a fundamental trade-off between abiotic stress tolerance and competitive ability, whereby fungi with wide thermal and moisture niches exhibit lower displacement ability. The magnitude of this dominance-tolerance trade-off is partially related to the environmental conditions under which the fungi were collected, with thermal niche traits exhibiting the strongest climate relationships. Nevertheless, moisture and thermal dominance-tolerance patterns exhibited contrasting phylogenetic signals, suggesting that these trends are influenced by a combination of niche sorting along taxonomic lines in tandem with acclimation and adaptation at the level of the individual. Collectively, our work reveals key insight into the life history strategies of saprotrophic fungi, demonstrating consistent trait trade-offs across broad spatial scales.


Assuntos
Proteínas Fúngicas/genética , Fungos/fisiologia , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Filogenia , Estresse Fisiológico
2.
New Phytol ; 222(1): 18-28, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394559

RESUMO

Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4 ). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long-term, high-frequency measurements of stem CH4 emissions to understand the fine-scale processes, alongside rapid large-scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil-tree-atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process-based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.


Assuntos
Ciclo do Carbono , Metano/metabolismo , Caules de Planta/metabolismo , Árvores/metabolismo , Modelos Biológicos , Água
3.
New Phytol ; 222(1): 35-51, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521089

RESUMO

Contents Summary 35 I. Introduction 36 II. Tree CH4 fluxes 36 III. Tree emissions of soil-produced CH4 40 IV. Tree-produced CH4 42 V. Trees in forest CH4 budgets 44 VI. Conclusions 46 Acknowledgements 48 Author contributions 48 References 48 SUMMARY: Forest ecosystem methane (CH4 ) research has focused on soils, but trees are also important sources and sinks in forest CH4 budgets. Living and dead trees transport and emit CH4 produced in soils; living trees and dead wood emit CH4 produced inside trees by microorganisms; and trees produce CH4 through an abiotic photochemical process. Here, we review the state of the science on the production, consumption, transport, and emission of CH4 by living and dead trees, and the spatial and temporal dynamics of these processes across hydrologic gradients inclusive of wetland and upland ecosystems. Emerging research demonstrates that tree CH4 emissions can significantly increase the source strength of wetland forests, and modestly decrease the sink strength of upland forests. Scaling from stem or leaf measurements to trees or forests is limited by knowledge of the mechanisms by which trees transport soil-produced CH4 , microbial processes produce and oxidize CH4 inside trees, a lack of mechanistic models, the diffuse nature of forest CH4 fluxes, complex overlap between sources and sinks, and extreme variation across individuals. Understanding the complex processes that regulate CH4 source-sink dynamics in trees and forests requires cross-disciplinary research and new conceptual models that transcend the traditional binary classification of wetland vs upland forest.


Assuntos
Florestas , Metano/biossíntese , Árvores/metabolismo , Transporte Biológico , Solo/química , Áreas Alagadas
4.
Ecology ; 99(4): 801-811, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465748

RESUMO

Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions.


Assuntos
Micobioma , Biodiversidade , Fungos , Nitrogênio , Madeira/microbiologia
5.
Sci Data ; 3: 160069, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27529613

RESUMO

Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.


Assuntos
Ecossistema , Árvores , Biodiversidade , Florestas , Modelos Teóricos
7.
Proc Natl Acad Sci U S A ; 112(22): 7033-8, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038557

RESUMO

Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.


Assuntos
Mudança Climática , Retroalimentação , Cadeia Alimentar , Fungos/fisiologia , Isópodes/fisiologia , Modelos Teóricos , Microbiologia do Solo , Análise de Variância , Animais , Massachusetts , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...