Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540087

RESUMO

Type 2 diabetes (T2D) has become a worldwide epidemic, primarily driven by obesity from overnutrition and sedentariness. Recent results reveal there is heterogeneity in both pathology and treatment responses in T2D patients. Therefore, a variety of T2D animal models are necessary to obtain a mechanistic understanding of distinct disease processes. T2D results from insufficient insulin, either due to beta cell loss or inborn deficiency. Although decreases in beta cell mass can occur through loss of identity or cell death, in this review, we will highlight the T2D animal models that display beta cell death, including the Zucker Diabetic Fatty Rat, sand rat, db/db mouse, and a novel diabetic zebrafish model, the Zebrafish Muscle Insulin-Resistant (zMIR) fish. Procuring a mechanistic understanding of different T2D progression trajectories under a variety of contexts is paramount for developing and testing more individualized treatments.

2.
Nat Commun ; 14(1): 235, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646689

RESUMO

Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.


Assuntos
Células Secretoras de Glucagon , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de Detecção de Cálcio , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Proliferação de Células , Glucagon , Células Secretoras de Glucagon/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Peixe-Zebra/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
3.
Cell Rep ; 40(8): 111255, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001973

RESUMO

Persistent endoplasmic reticulum (ER) stress induces islet inflammation and ß cell loss. How islet inflammation contributes to ß cell loss remains uncertain. We have reported previously that chronic overnutrition-induced ER stress in ß cells causes Ripk3-mediated islet inflammation, macrophage recruitment, and a reduction of ß cell numbers in a zebrafish model. We show here that ß cell loss results from the intricate communications among ß cells, macrophages, and neutrophils. Macrophage-derived Tnfa induces cxcl8a in ß cells. Cxcl8a, in turn, attracts neutrophils to macrophage-contacted "hotspots" where ß cell loss occurs. We also show potentiation of chemokine expression in stressed mammalian ß cells by macrophage-derived TNFA. In Akita and db/db mice, there is an increase in CXCL15-positive ß cells and intra-islet neutrophils. Blocking neutrophil recruitment in Akita mice preserves ß cell mass and slows diabetes progression. These results reveal an important role of neutrophils in persistent ER stress-induced ß cell loss.


Assuntos
Células Secretoras de Insulina , Neutrófilos , Animais , Apoptose , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Mamíferos , Camundongos , Peixe-Zebra
4.
Mol Metab ; 63: 101541, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835371

RESUMO

OBJECTIVES: Pancreatic beta cells secrete insulin postprandially and during fasting to maintain glucose homeostasis. Although glucose-stimulated insulin secretion (GSIS) has been extensively studied, much less is known about basal insulin secretion. Here, we performed a genome-wide CRISPR/Cas9 knockout screen to identify novel regulators of insulin secretion. METHODS: To identify genes that cell autonomously regulate insulin secretion, we engineered a Cas9-expressing MIN6 subclone that permits irreversible fluorescence labeling of exocytic insulin granules. Using a fluorescence-activated cell sorting assay of exocytosis in low glucose and high glucose conditions in individual cells, we performed a genome-wide CRISPR/Cas9 knockout screen. RESULTS: We identified several members of the COMMD family, a conserved family of proteins with central roles in intracellular membrane trafficking, as positive regulators of basal insulin secretion, but not GSIS. Mechanistically, we show that the Commander complex promotes insulin granules docking in basal state. This is mediated, at least in part, by its function in ITGB1 recycling. Defective ITGB1 recycling reduces its membrane distribution, the number of focal adhesions and cortical ELKS-containing complexes. CONCLUSIONS: We demonstrated a previously unknown function of the Commander complex in basal insulin secretion. We showed that by ITGB1 recycling, Commander complex increases cortical adhesions, which enhances the assembly of the ELKS-containing complexes. The resulting increase in the number of insulin granules near the plasma membrane strengthens basal insulin secretion.


Assuntos
Células Secretoras de Insulina , Exocitose , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo
5.
Cell Regen ; 9(1): 9, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32613468

RESUMO

The pathological feature of diabetes, hyperglycemia, is a result of an inadequate number and/or function of insulin producing ß cells. Replenishing functional ß cells is a strategy to cure the disease. Although ß-cell regeneration occurs in animal models under certain conditions, human ß cells are refractory to proliferation. A better understanding of both the positive and the negative regulatory mechanisms of ß-cell regeneration in animal models is essential to develop novel strategies capable of inducing functional ß cells in patients. Zebrafish are an attractive model system for studying ß-cell regeneration due to the ease to which genetic and chemical-genetic approaches can be used as well as their high regenerative capacity. Here, we highlight the current state of ß-cell regeneration studies in zebrafish with an emphasis on cell signaling mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...