Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(10): 101001, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962014

RESUMO

Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.

2.
Phys Rev Lett ; 130(10): 101002, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962032

RESUMO

We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σ[over ¯]_{e}, the axioelectric coupling constant g_{Ae}, and the dark photon kinetic mixing parameter κ. We also set the first dark matter direct-detection constraints on the mixing angle |U_{e4}|^{2} for keV/c^{2} sterile neutrinos.

3.
Phys Rev Lett ; 121(11): 111303, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265123

RESUMO

We present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.

4.
Phys Rev Lett ; 121(8): 081307, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192596

RESUMO

We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^{2} for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^{2}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...