Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Res Natl Inst Stand Technol ; 126: 126055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469448

RESUMO

The development of an international, precompetitive, collaborative, ultraviolet (UV) research consortium is discussed as an opportunity to lay the groundwork for a new UV commercial industry and the supply chain to support this industry. History has demonstrated that consortia can offer promising approaches to solve many common, current industry challenges, such as the paucity of data regarding the doses of ultraviolet-C (UV-C, 200 nm to 280 nm) radiation necessary to achieve the desired reductions in healthcare pathogens and the ability of mobile disinfection devices to deliver adequate doses to the different types of surfaces in a whole-room environment. Standard methods for testing are only in the initial stages of development, making it difficult to choose a specific UV-C device for a healthcare application. Currently, the public interest in UV-C disinfection applications is elevated due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the respiratory coronavirus disease 19 (COVID-19). By channeling the expertise of different UV industry stakeholder sectors into a unified international consortium, innovation in UV measurements and data could be developed to support test methods and standards development for UV healthcare equipment. As discussed in this paper, several successful examples of consortia are applicable to the UV industry to help solve these types of common problems. It is anticipated that a consortium for the industry could lead to UV applications for disinfection becoming globally prolific and commonplace in residential, work, business, and school settings as well as in transportation (bus, rail, air, ship) environments. Aggressive elimination of infectious agents by UV-C technologies would also help to reduce the evolution of antibiotic-resistant bacteria.

2.
J Res Natl Inst Stand Technol ; 126: 126014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469449

RESUMO

The National Institute of Standards and Technology (NIST) hosted an international workshop on ultraviolet-C (UV-C) disinfection technologies on January 14-15, 2020, in Gaithersburg, Maryland, in collaboration with the International Ultraviolet Association (IUVA). This successful public event, as evidenced by the participation of more than 150 attendees, with 65% from the ultraviolet technology industry, was part of an ongoing collaborative effort between NIST and the IUVA and its affiliates to examine the measurement and standards needs for pathogen abatement with UV-C in the healthcare whole-room environment. Prior to and since this event, stakeholders from industry, academia, government, and public health services have been collaboratively engaged with NIST to accelerate the development and use of accurate measurements and models for UV-C disinfection technologies and facilitate technology transfer. The workshop served as an open forum to continue this discussion with a technical focus centered on the effective design, use, and implementation of UV-C technologies for the prevention and treatment of healthcare-associated infections (HAIs) in complex hospital settings. These settings include patient rooms, operating rooms, common staging areas, ventilation systems, personal protective equipment, and tools for the reprocessing and disinfecting of instruments or devices used in medical procedures, such as catheters and ventilators. The critical need for UV-C technologies for disinfection has been amplified by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), stimulating an even greater emphasis on identifying testing and performance metrology needs. This paper discusses these topics based on the international workshop and community activities since the workshop, including a public World-Wide-Web-based seminar with more than 500 registered attendees on September 30, 2020; an international conference on UV-C technologies for air and surface disinfection, December 8-9, 2020; and a webinar on returning to normalcy with the use of UV-C technologies, April 27 and 29, 2021. This article also serves as an introduction to a special section of the Journal of Research of the National Institute of Standards and Technology, where full papers address recent technical, noncommercial, UV-C technology and pathogen-abatement investigations. The set of papers provides keen insights from the vantage points of medicine and industry. Recent technical developments, successes, and needs in optics and photonics, radiation physics, biological efficacy, and the needs of future markets in UV-C technologies are described to provide a concise compilation of the community's efforts and the state of the field. Standards needs are identified and discussed throughout this special section. This article provides a summary of the essential role of standards for innovation and implementation of UV-C technology for improved patient care and public health.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31092964

RESUMO

Nation-wide, healthcare-associated infections (HAIs) infect one in every 25 hospital patients, account for more than 100,000 deaths and increase medical costs by around $96-147B, each year. Ultraviolet-C (UV-C) antimicrobial devices are shown to reduce the incidence of many of these HAIs by 35% or more, through the deactivation of the pathogen's DNA chain following irradiation with a wavelength of ~254 nm. This irradiation does not kill the cells, per se but effectively prevents the cells from multiplying. Clinical case reductions of 30-70% in Clostridium difficile (C. diff.) have been reported with similar results for methicillin-resistant Staphylococcus aureus (MRSA), and others. The methodology works, but, the adoption of UV-C technology by the healthcare industry has been sporadic. This is largely due to the lack of definitive knowledge and uniform performance standards or measures for efficacy to help healthcare managers make informed, credible investment decisions. The leveling of the playing field with scientifically certifiable data of the efficacy of antimicrobial devices will enhance acceptance by the healthcare industry and public, at large, as well as facilitate science-based decision making. The National Institute of Standards and Technology (NIST) has engaged with the International Ultra Violet Association (IUVA) and its member companies and affiliates to explore ways to develop needed standards, determine appropriate testing protocols, and transfer the technology to help to reduce these inharmonious market conditions. Collaborative efforts are underway to develop science-based answers to the healthcare industry's questions surrounding standards and measures of device disinfection efficacy, as well as reliability, operations and durability. These issues were recently discussed at the IUVA 2018 America's Conference in Redondo Beach, CA in several panel sessions. A major output of the sessions was the formation of a formal IUVA Working Group for the development of antimicrobial standards and initiatives for the healthcare industry. The goal of this working group is to provide global guidance, with specific programs and deliverables, on the use of UV technologies and standards to combat HAIs and to further the stated aims of the IUVA on its outreach to the healthcare industry. This paper reviews the strong collaboration between NIST and its industry partners pursuing the development of standards, guidelines and guidance documents related to healthcare applications that include standard methods for validating performance of UV devices and test guidelines for efficacy measurements. In addition, an overview of the issues, problems, and a summary of the needs confronting future growth and success of the UV industry in the Nation's healthcare application space is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...