Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(11): e2022JE007496, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37035522

RESUMO

The Martian highlands contain Noachian-aged areally-extensive (>225 km2) bedrock exposures that have been mapped using thermal and visible imaging datasets. Given their age, crater density and impact gardening should have led to the formation of decameter scale layers of regolith that would overlie and bury these outcrops if composed of competent materials like basaltic lavas. However, many of these regions lack thick regolith layers and show clear exposures of bedrock materials with elevated thermal inertia values compared to the global average. Hypothesized reasons for the lack of regolith include: (a) relatively weaker material properties than lavas, where friable materials are comminuted and deflated during wind erosion, (b) long-term protection from regolith development through burial and later exhumation through one or more surface processes, and (c) spatially concentrated aeolian erosion and wind energetics on well-lithified basaltic substrates. To test the third hypothesis, we used the Mars Regional Atmospheric Modeling System to calculate wind erosive strength at 10 regions throughout the Martian highlands and compared it to their thermophysical properties by using thermal infrared data derived from the Thermal Emission Spectrometer to understand the effect that Amazonian mesoscale wind patterns may have on the exposure of bedrock. We also investigated the effect of planet obliquity, Ls of perihelion, and atmospheric mean pressure on wind erosion potential. We found no evidence for increased aeolian activity over bedrock-containing regions relative to surrounding terrains, including at the mafic floor unit at Jezero crater (Máaz formation), supporting the first or second hypotheses for these regions.

2.
IEEE Trans Pattern Anal Mach Intell ; 5(3): 349-52, 1983 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21869119

RESUMO

The postulate is made that ``any computation which can be performed recursively can be performed easily and efficiently by iteration coupled with association.'' The ``easily and efficiently'' part of that postulate is nontrivial to prove, and is shown by examples in this paper. The use of association leads directly to potential implementation by content-addressable memories. The example addressed is region growing, often given as a classical example of the use of recursive control structures in image processing. Recursive control structures, however, are somewhat awkward to build in hardware, where the intent is to segment an image at raster scan rates. This paper describes an algorithm and hardware structure capable of per-forming region labeling iteratively at scan rates. Every pixel is individually labeled with an identifier signifying to which region it belongs. The difficulties which often justify recursion (``U''- and ``N''-shaped regions, etc.) are handled by maintaining an equivalence table in hardware, transparent to the computer, which reads the labeled pixels. The mechanism for updating the region map is explained in detail. Furthermore, simulation of the associative memory has been demon-strated to be an effective implementation of region growing in a serial computer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...