Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 61: 138-149, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27940078

RESUMO

Biochar has intrinsic and nascent structural and sorption properties that may alter the physical and chemical properties of a composting mixture thus influencing the production of greenhouse gases [GHGs; nitrous oxide (N2O) and methane (CH4)]. In this study, contrasting biochars produced from greenwaste (GWB) or poultry litter (PLB) were incorporated into a composting mixture containing poultry litter and straw, and GHG emissions were measured in situ during composting using Fourier Transform Infrared Spectroscopy (FTIR). Emissions of N2O from the biochar-amended composting mixtures decreased significantly (P<0.05) soon after commencement of the composting process compared with the non-amended control. The cumulative emissions of N2O over 8weeks in the GWB composting mixture (GWBC), PLB composting mixture (PLBC) and control (no biochar) were 4.2, 5.0 and 14.0gN2O-Nkg-1 of total nitrogen (TN) in composting mixture, respectively (P<0.05). The CH4 emissions were significantly (P<0.05) lower in the GWBC and PLBC treatments than the control during the period from day 8 to day 36, when anaerobic conditions likely prevailed. The cumulative CH4 emissions were 12, 18 and 80mg CH4-Ckg-1 of total carbon (TC) for the GWBC, PLBC and control treatments, respectively, though due to wide variation between replicates this difference was not statistically significant. The cumulative N2O and CH4 emissions were similar between the GWBC and PLBC despite differences in properties of the two biochars. X-ray Photoelectron Spectroscopy (XPS) analysis and SEM imaging of the composted biochars indicated the presence of iron oxide compounds and amine-NH3 on the surface and pores of the biochars (PLB>GWB). The change in nitrogen (N) functional groups on the biochar surface after composting is evidence for sorption and/or reaction with N from labile organic N, mineral N, and gaseous N (e.g. N2O). The concentration of NH4+ increased during the thermophilic phase and then decreased during the maturation phase, while NO3- accumulated during the maturation phase. Total N retained was significantly (P<0.05) higher in the PLBC (740g) and the GWBC (660g) relative to the control (530g). The TC retained was significantly higher in the GWBC (10.0kg) and the PLBC (8.5kg) cf. the control (6.0kg). Total GHG emissions across the composting period were 50, 63 and 183kg CO2-eqt-1 of initial mass of GWBC, PLBC and control (dry weight basis) respectively. These results support the co-composting of biochar to lower net emissions of GHGs while increasing N retention (and fertiliser N value) in the mature compost.


Assuntos
Carvão Vegetal , Esterco , Aves Domésticas , Solo , Gerenciamento de Resíduos/métodos , Animais , Efeito Estufa/prevenção & controle , Concentração de Íons de Hidrogênio , Metano , Nitrogênio/análise , Espectroscopia Fotoeletrônica , Solo/química , Temperatura
2.
Appl Spectrosc ; 62(1): 59-65, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18230209

RESUMO

A spectroscopic analyzer has been developed for rapid, accurate quantification of acetylene and methyl acetylene in hydrocarbon cracked gas processing plants. The system utilizes off-axis integrated output cavity spectroscopy to measure the near-infrared, cavity-enhanced absorption spectrum of ethylene, methyl acetylene, and acetylene and employs a chemometric data analysis strategy to quantify the respective constituents. Initial tests verified that the instrument is capable of measuring, <0.050 ppmv of acetylene, has a precision of +/-0.025 ppmv, and can accurately determine acetylene concentrations with comparable accuracy to a gas chromatograph (+/-0.1 ppmv) in an actual process stream composition matrix under plant operating conditions. Subsequently, the prototype analyzer was installed in a hydrocarbon facility for field-trials, where its rapid response (< or =30 seconds or better) allowed it to measure transient acetylene and methyl acetylene fluctuations that were too fast for conventional methodologies. Moreover, the analyzer showed an extended dynamic range that enabled measurement of very high acetylene levels (0-1000 ppmv) during abnormal plant operations. Finally, two commercial acetylene analyzer systems with stream-switching capabilities were implemented in an industrial facility and initial results are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...