Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 194(6): 1047-1061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403161

RESUMO

Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.


Assuntos
Cartilagem Articular , Receptores de Hialuronatos , Ácido Hialurônico , Macrófagos , Animais , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Coelhos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Inflamação/metabolismo , Inflamação/patologia
2.
Front Mol Biosci ; 9: 990861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275631

RESUMO

The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.

3.
Anal Biochem ; 652: 114769, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660507

RESUMO

A solid phase adsorption method for selective isolation of hyaluronan (HA) from biological samples is presented. Following enzymatic degradation of protein, HA can be separated from sulfated glycosaminoglycans, other unsulfated glycosaminoglycans, nucleic acids, and proteolytic fragments by adsorption to amorphous silica at specific salt concentrations. The adsorbed HA can be released from silica using neutral and basic aqueous solutions. HA ranging in size from ∼9 kDa to MDa polymers has been purified by this method from human serum and conditioned medium of cultured cells.


Assuntos
Ácido Hialurônico , Dióxido de Silício , Adsorção , Células Cultivadas , Glicosaminoglicanos , Humanos
4.
Am J Physiol Cell Physiol ; 322(4): C674-C687, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196167

RESUMO

The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.


Assuntos
Receptores de Hialuronatos , Ácido Hialurônico , Humanos , Receptores de Hialuronatos/metabolismo , Peso Molecular
5.
J Autoimmun ; 124: 102713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390919

RESUMO

Despite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1ß from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.


Assuntos
Artrite Reumatoide/imunologia , Receptores de Hialuronatos/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Esclerose Múltipla/imunologia , Peptídeos/genética , Proteína Amiloide A Sérica/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Autoimunidade , Células Cultivadas , Biologia Computacional , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Peptídeos/uso terapêutico , Proteína Amiloide A Sérica/genética
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209086

RESUMO

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1ß)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas da Matriz Extracelular/química , Receptores de Hialuronatos/química , Ácido Hialurônico/metabolismo , Interleucina-1beta/efeitos adversos , Células-Tronco Mesenquimais/citologia , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Condrogênese , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metaloproteases/genética , Camundongos , Peptídeos/química
7.
Sci Rep ; 10(1): 1441, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996703

RESUMO

Inflammation plays a critical role in osteoarthritis (OA). It stimulates catabolic events in articular chondrocytes and prevents chondrogenic precursor cells from repairing cartilage lesions, leading to accelerated cartilage degradation. Therefore, the identification of novel factors that reduce catabolic events in chondrocytes and enhances chondrogenic differentiation of precursor cells in an inflammatory environment may provide novel therapeutic strategies for the treatment of OA. The goal of this study was to determine whether a hyaluronan (HA)-binding peptide (P15-1), via interacting with high molecular weight (HMW)HA can enhance the anti-inflammatory properties of HMWHA and decrease catabolic events in interleukin-1beta (IL-1ß)-treated human articular chondrocytes. Treatment with P15-1 decreased catabolic events and stimulated anabolic events in articular chondrocytes cultured in an inflammatory environment. P15-1 pre-mixed with HMWHA was more effective in inhibiting catabolic events and stimulating anabolic events than P15-1 or HMWHA alone. Our findings suggest that P15-1 together with HMWHA inhibits catabolic events in articular chondrocytes via the inhibition of p38 mitogen-activated protein kinases (MAPK) and increasing the thickness of the pericellular matrix (PCM) around chondrocytes thereby decreasing catabolic signaling. Finally, conditioned medium from IL-1ß and P15-1-treated human articular chondrocytes was less inhibitory for chondrogenic differentiation of precursor cells than conditioned medium from chondrocytes treated with IL-1ß alone. In conclusion, P15-1 is proposed to function synergistically with HMWHA to enhance the protective microenvironment for chondrocytes and mesenchymal stem cells during inflammation and regeneration.


Assuntos
Cartilagem/patologia , Condrócitos/metabolismo , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Osteoartrite/metabolismo , Adulto , Diferenciação Celular , Células Cultivadas , Condrócitos/patologia , Condrogênese , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Orthop Res ; 38(4): 731-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31736104

RESUMO

The purpose of this investigation was to determine the role of extracellular vesicles (EVs), released from articular chondrocytes in a physiological or pathological state, in cell-cell communication with other articular chondrocytes or chondrocyte precursor cells. The conditioned medium from interleukin-1ß (IL-1ß)-treated human articular chondrocytes stimulated catabolic events and inhibited type II collagen expression in articular chondrocytes to a much greater degree than medium from IL-1ß-treated chondrocytes after complete removal of EVs. The vehicle-treated and IL-1ß-treated human articular chondrocytes released EVs of similar size; however, the number of EVs released by IL-1ß-treated chondrocytes was markedly higher than the number of EVs released from the vehicle-treated cells. Furthermore, our findings demonstrate that similar to medium from IL-1ß-treated chondrocytes containing EVs, EVs isolated from medium of IL-1ß-treated chondrocytes stimulated catabolic events in articular chondrocytes, whereas EVs isolated from the medium of vehicle-treated chondrocytes inhibited catabolic events and increased messenger RNA levels of aggrecan and type II collagen in IL-1ß-treated chondrocytes. Furthermore, the medium containing EVs from vehicle-treated articular chondrocytes or EVs isolated from this medium stimulated chondrogenesis of C3H10T1/2 cells, whereas medium containing EVs from IL-1ß-treated chondrocytes or EVs isolated from this medium inhibited chondrogenesis. Our findings suggest that EVs released by articular chondrocytes play a key role in the communication between joint cells and ultimately in joint homeostasis, maintenance, pathology, and repair. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:731-739, 2020.


Assuntos
Comunicação Celular , Condrócitos/fisiologia , Vesículas Extracelulares/fisiologia , Idoso , Animais , Cartilagem Articular/citologia , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células
9.
Inflammation ; 42(5): 1808-1820, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31243649

RESUMO

Hyaluronan (HA) fragments have been proposed to elicit defensive or pro-inflammatory responses in many cell types. For articular chondrocytes in an inflammatory environment, studies have failed to reach consensus on the endogenous production or effects of added HA fragments. The present study was undertaken to resolve this discrepancy. Cultured primary human articular chondrocytes were exposed to the inflammatory cytokine IL-1ß, and then tested for changes in HA content/size in conditioned medium, and for the expression of genes important in HA binding/signaling or metabolism, and in other catabolic/anabolic responses. Changes in gene expression caused by enzymatic degradation of endogenous HA, or addition of exogenous HA fragments, were examined. IL-1ß increased the mRNA levels for HA synthases HAS2/HAS3 and for the HA-binding proteins CD44 and TSG-6. mRNA levels for TLR4 and RHAMM were very low and were little affected by IL-1ß. mRNA levels for catabolic markers were increased, while type II collagen (α1(II)) and aggrecan were decreased. HA concentration in the conditioned medium was increased, but the HA was not degraded. Treatment with recombinant hyaluronidase or addition of low endotoxin HA fragments did not elicit pro-inflammatory responses. Our findings showed that HA fragments were not produced by IL-1ß-stimulated human articular chondrocytes in the absence of other sources of reactive oxygen or nitrogen species, and that exogenous HA fragments from oligosaccharides up to about 40 kDa in molecular mass were not pro-inflammatory agents for human articular chondrocytes, probably due to low expression of TLR4 and RHAMM in these cells.


Assuntos
Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Inflamação/etiologia , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Fragmentos de Peptídeos/farmacologia
10.
Methods Mol Biol ; 1952: 91-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30825168

RESUMO

The average molecular mass of hyaluronan (HA) in most healthy biological fluids and tissues is usually about 6000-8000 kDa, but the biosynthetic mechanism results in a polydisperse mixture of sizes. Subsequent enzymatic degradation, or the action of reactive oxygen and nitrogen species, can further increase polydispersity and decrease the average size. Fragmented HA can be a biomarker of inflammation. In addition, reductions in HA size are associated with tissue remodeling and repair processes. Some cell-surface receptor proteins have been reported to have HA-binding affinities that are size specific, and participate in activation of signaling cascades controlling multiple aspects of cell behavior. Here we describe simple agarose gel electrophoresis protocols for the determination of the molecular mass distribution of HA isolated from tissues and fluids.


Assuntos
Eletroforese em Gel de Ágar/métodos , Ácido Hialurônico/química , Acetatos/química , Ácidos Bóricos/química , Densitometria/métodos , Ácido Edético/química , Etilenodiaminas/química , Humanos , Ácido Hialurônico/isolamento & purificação , Peso Molecular , Coloração e Rotulagem/métodos , Trometamina/química
11.
J Thorac Cardiovasc Surg ; 156(4): 1598-1608.e1, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859675

RESUMO

OBJECTIVE: Intrapericardial fibrous adhesions increase the risk of sternal reentry. Proteoglycan 4/lubricin (PRG4) is a mucin-like glycoprotein that lubricates tissue compartments and prevents inflammation. We characterized PRG4 expression in human pericardium and examined its effects in vitro on human cardiac myofibroblast fibrotic activity and in vivo as a measure of its therapeutic potential to prevent adhesions. METHODS: Full-length PRG4 expression was determined using Western blot analysis and amplified luminescent proximity homogeneous assay in human pericardial tissues obtained at cardiotomy. The in vitro effects of PRG4 were investigated on human cardiac myofibroblasts for cell adhesion, collagen gel contraction, and cell-mediated extracellular matrix remodeling. The influence of PRG4 on pericardial homeostasis was determined in a chronic porcine animal model. RESULTS: PRG4 is expressed in human pericardial fluid and colocalized with pericardial mesothelial cells. Recombinant human PRG4 prevented human cardiac myofibroblast attachment and reduced myofibroblast activity assessed using collagen gel contraction assay (64.6% ± 8.1% vs 47.1% ± 6.8%; P = .02). Using a microgel assay, human cardiac myofibroblast mediated collagen fiber remodeling was attenuated by PRG4 (1.17 ± 0.03 vs 0.90 ± 0.05; P = .002). In vivo, removal of pericardial fluid alone induced severe intrapericardial adhesion formation, tissue thickening, and inflammatory fluid collections. Restoration of intrapericardial PRG4 was protective against fibrous adhesions and preserved the pericardial space. CONCLUSIONS: For the first time, we show that PRG4 is expressed in human pericardial fluid and regulates local fibrotic myofibroblast activity. Loss of PRG4-enriched pericardial fluid after cardiotomy might induce adhesion formation. Therapeutic restoration of intrapericardial PRG4 might prevent fibrous/inflammatory adhesions and reduce the risk of sternal reentry.


Assuntos
Miofibroblastos/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Proteoglicanas/farmacologia , Doenças Torácicas/prevenção & controle , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Pericárdio/patologia , Proteoglicanas/metabolismo , Sus scrofa , Doenças Torácicas/metabolismo , Doenças Torácicas/patologia , Aderências Teciduais
12.
Glycobiology ; 28(3): 137-147, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300896

RESUMO

A method for specific quantification of hyaluronan (HA) concentration using AlphaScreen® (Amplified Luminescent Proximity Homogeneous Assay) technology is described. Two types of hydrogel-coated and chromophore-loaded latex nanobeads are employed. The proximity of the beads in solution is detected by excitation of the donor bead leading to the production of singlet oxygen, and chemiluminescence from the acceptor bead upon exposure to singlet oxygen. In the HA assay, the donor bead is modified with streptavidin, and binds biotin-labeled HA. The acceptor bead is modified with Ni(II), and is used to bind a specific recombinant HA-binding protein (such as HABP; aggrecan G1-IGD-G2) with a His-tag. Competitive inhibition of the HA-HABP interaction by free unlabeled HA in solution is used for quantification. The assay is specific for HA, and not dependent on HA molecular mass above the decasaccharide. HA can be quantified over a concentration range of approximately 30-1600 ng/mL using 2.5 µL of sample, for a detectable mass range of approximately 0.08-4 ng HA. This sensitivity of the AlphaScreen assay is greater than existing ELISA-like methods, due to the small volume requirements. HA can be detected in biological fluids using the AlphaScreen assay, after removal of bound proteins from HA and dilution or removal of other interfering proteins and lipids.


Assuntos
Ácido Hialurônico/análise , Medições Luminescentes , Condrócitos/química , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-29173725

RESUMO

The glycosaminoglycan hyaluronan (HA) is a key component of the microenvironment surrounding cells. In healthy tissues, HA molecules have extremely high molecular mass and consequently large hydrodynamic volumes. Tethered to the cell surface by clustered receptor proteins, HA molecules crowd each other, as well as other macromolecular species. This leads to severe nonideality in physical properties of the biomatrix, because steric exclusion leads to an increase in effective concentration of the macromolecules. The excluded volume depends on both polymer concentration and hydrodynamic volume/molecular mass. The biomechanical properties of the extracellular matrix, tissue hydration, receptor clustering, and receptor-ligand interactions are strongly affected by the presence of HA and by its molecular mass. In inflammation, reactive oxygen and nitrogen species fragment the HA chains. Depending on the rate of chain degradation relative to the rates of new synthesis and removal of damaged chains, short fragments of the HA molecules can be present at significant levels. Not only are the physical properties of the extracellular matrix affected, but the HA fragments decluster their primary receptors and act as endogenous danger signals. Bioanalytical methods to isolate and quantify HA fragments have been developed to determine profiles of HA content and size in healthy and diseased biological fluids and tissues. These methods have potential use in medical diagnostic tests. Therapeutic agents that modulate signaling by HA fragments show promise in wound healing and tissue repair without fibrosis.


Assuntos
Ácido Hialurônico , Animais , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Tamanho da Partícula , Propriedades de Superfície
14.
Matrix Biol ; 63: 117-132, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28232112

RESUMO

Mammary gland morphogenesis begins during fetal development but expansion of the mammary tree occurs postnatally in response to hormones, growth factors and extracellular matrix. Hyaluronan (HA) is an extracellular matrix polysaccharide that has been shown to modulate growth factor-induced branching in culture. Neither the physiological relevance of HA to mammary gland morphogenesis nor the role that HA receptors play in these responses are currently well understood. We show that HA synthase (HAS2) is expressed in both ductal epithelia and stromal cells but HA primarily accumulates in the stroma. HA accumulation and expression of the HA receptors CD44 and RHAMM are highest during gestation when gland remodeling, lateral branch infilling and lobulo-alveoli formation is active. Molecular weight analyses show that approximately 98% of HA at all stages of morphogenesis is >300kDa. Low levels of 7-114kDa HA fragments are also detected and in particular the accumulation of 7-21kDa HA fragments are significantly higher during gestation than other morphogenetic stages (p<0.05). Using these in vivo results as a guide, in culture analyses of mammary epithelial cell lines (EpH4 and NMuMG) were performed to determine the roles of high molecular weight, 7-21kDa (10kDa MWavg) and HA receptors in EGF-induced branching morphogenesis. Results of these assays show that while HA synthesis is required for branching and 10kDa HA fragments strongly stimulate branching, the activity of HA decreases with increasing molecular weight and 500kDa HA strongly inhibits this morphogenetic process. The response to 10kDa HA requires RHAMM function and genetic deletion of RHAMM transiently blunts lateral branching in vivo. Collectively, these results reveal distinct roles for HA polymer size in modulating growth factor induced mammary gland branching and implicates these polymers in both the expansion and sculpting of the mammary tree during gestation.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Ácido Hialurônico/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Linhagem Celular , Células Epiteliais/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Morfogênese , Gravidez , Estrutura Quaternária de Proteína , Maturidade Sexual
15.
F1000Res ; 4: 622, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594344

RESUMO

Hyaluronan (HA) is a high molecular weight glycosaminoglycan of the extracellular matrix (ECM), which is particularly abundant in soft connective tissues. Solutions of HA can be highly viscous with non-Newtonian flow properties. These properties affect the movement of HA-containing fluid layers within and underlying the deep fascia. Changes in the concentration, molecular weight, or even covalent modification of HA in inflammatory conditions, as well as changes in binding interactions with other macromolecules, can have dramatic effects on the sliding movement of fascia. The high molecular weight and the semi-flexible chain of HA are key factors leading to the high viscosity of dilute solutions, and real HA solutions show additional nonideality and greatly increased viscosity due to mutual macromolecular crowding. The shear rate dependence of the viscosity, and the viscoelasticity of HA solutions, depend on the relaxation time of the molecule, which in turn depends on the HA concentration and molecular weight. Temperature can also have an effect on these properties. High viscosity can additionally affect the lubricating function of HA solutions. Immobility can increase the concentration of HA, increase the viscosity, and reduce lubrication and gliding of the layers of connective tissue and muscle. Over time, these changes can alter both muscle structure and function. Inflammation can further increase the viscosity of HA-containing fluids if the HA is modified via covalent attachment of heavy chains derived from Inter-α-Inhibitor. Hyaluronidase hydrolyzes HA, thus reducing its molecular weight, lowering the viscosity of the extracellular matrix fluid and making outflow easier. It can also disrupt any aggregates or gel-like structures that result from HA being modified. Hyaluronidase is used medically primarily as a dispersion agent, but may also be useful in conditions where altered viscosity of the fascia is desired, such as in the treatment of muscle stiffness.

16.
Front Immunol ; 6: 236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106384

RESUMO

Breast cancer-induced inflammation in the tumor reactive stroma supports invasion and malignant progression and is contributed to by a variety of host cells including macrophages and fibroblasts. Inflammation appears to be initiated by tumor cells and surrounding host fibroblasts that secrete pro-inflammatory cytokines and chemokines and remodel the extracellular matrix (ECM) to create a pro-inflammatory "cancerized" or tumor reactive microenvironment that supports tumor expansion and invasion. The tissue polysaccharide hyaluronan (HA) is an example of an ECM component within the cancerized microenvironment that promotes breast cancer progression. Like many ECM molecules, the function of native high-molecular weight HA is altered by fragmentation, which is promoted by oxygen/nitrogen free radicals and release of hyaluronidases within the tumor microenvironment. HA fragments are pro-inflammatory and activate signaling pathways that promote survival, migration, and invasion within both tumor and host cells through binding to HA receptors such as CD44 and RHAMM/HMMR. In breast cancer, elevated HA in the peri-tumor stroma and increased HA receptor expression are prognostic for poor outcome and are associated with disease recurrence. This review addresses the critical issues regarding tumor-induced inflammation and its role in breast cancer progression focusing specifically on the changes in HA metabolism within tumor reactive stroma as a key factor in malignant progression.

17.
Front Immunol ; 6: 261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082778

RESUMO

Hyaluronan is a simple repeating disaccharide polymer, synthesized at the cell surface by integral membrane synthases. The repeating sequence is perfectly homogeneous, and is the same in all vertebrate tissues and fluids. The polymer molecular mass is more variable. Most commonly, hyaluronan is synthesized as a high-molecular mass polymer, with an average molecular mass of approximately 1000-8000 kDa. There are a number of studies showing increased hyaluronan content, but reduced average molecular mass with a broader range of sizes present, in tissues or fluids when inflammatory or tissue-remodeling processes occur. In parallel studies, exogenous hyaluronan fragments of low-molecular mass (generally, <200 kDa) have been shown to affect cell behavior through binding to receptor proteins such as CD44 and RHAMM (gene name HMMR), and to signal either directly or indirectly through toll-like receptors. These data suggest that receptor sensitivity to hyaluronan size provides a biosensor of the state of the microenvironment surrounding the cell. Sensitive methods for isolation and characterization of hyaluronan and its fragments have been developed and continue to improve. This review provides an overview of the methods and our current state of knowledge of hyaluronan content and size distribution in biological fluids and tissues.

18.
Anal Biochem ; 474: 78-88, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25579786

RESUMO

Hyaluronan (HA) in human milk mediates host responses to microbial infection via TLR4- and CD44-dependent signaling. Signaling by HA is generally size specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low-M component. Here we report the size distribution of HA in human milk samples from 20 unique donors. A new method for HA analysis, employing ion exchange (IEX) chromatography to fractionate HA by size and specific quantification of each size fraction by competitive enzyme-linked sorbent assay (ELSA), was developed. When separated into four fractions, milk HA with M⩽20 kDa, M∼20 to 60 kDa, and M∼60 to 110 kDa comprised averages of 1.5, 1.4, and 2.0% of the total HA, respectively. The remaining 95% was HA with M⩾110 kDa. Electrophoretic analysis of the higher M HA from 13 samples showed nearly identical M distributions, with an average M of approximately 440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low-M HA components.


Assuntos
Ácido Hialurônico/química , Leite Humano/química , Calibragem , Fracionamento Químico , Densitometria , Eletroforese , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Ácido Hialurônico/isolamento & purificação , Troca Iônica , Peso Molecular
19.
Biorheology ; 51(6): 409-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25818000

RESUMO

BACKGROUND: The contribution of proteoglycan 4 (PRG4) to synovial fluid and hyaluronan (HA) solution rheology are poorly understood. The effects of PRG4 disulfide-bonded structure on viscosity and viscosity of newly available full-length recombinant human PRG4 (rhPRG4) have not previously been reported. OBJECTIVE: This study determined the viscosity of PRG4 and rhPRG4, R/A (reduced and alkylated) PRG4 and rhPRG4, and PRG4 and rhPRG4+HA solutions. METHODS: Steady shear viscosities of 1.5 MDa HA, PRG4 from bovine cartilage explant culture, rhPRG4 and (rh)PRG4+HA solutions were measured with 40 mm parallel plate fixtures. RESULTS: PRG4 demonstrated shear-dependent viscosity at high concentrations, but Newtonian behaviour at low concentrations and when disulfide-bonded/multimeric structure was disrupted by R/A. rhPRG4 demonstrated Newtonian behaviour over all concentrations tested and upon R/A. At high HA concentrations, rhPRG4 reduced solution viscosity, suggesting a binding interaction. At low HA concentrations, solution viscosity was increased relative to HA alone, possibly due to self-association of rhPRG4. Effects of PRG4 on HA solution viscosity were dependent on PRG4's disulfide-bonded structure. CONCLUSIONS: The finding that rhPRG4 can increase the viscosity of low concentration HA solutions suggests that supplementation with rhPRG4 may help mitigate the loss in synovial fluid viscosity experienced with decreased HA concentration in osteoarthritis.


Assuntos
Ácido Hialurônico/química , Proteoglicanas/química , Líquido Sinovial/química , Animais , Bovinos , Humanos , Ácido Hialurônico/metabolismo , Osteoartrite/metabolismo , Proteoglicanas/metabolismo , Resistência ao Cisalhamento , Líquido Sinovial/metabolismo , Viscosidade
20.
Glycobiology ; 23(11): 1270-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23964097

RESUMO

Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.


Assuntos
Receptores de Hialuronatos/química , Ácido Hialurônico/química , Biotinilação , Densitometria , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...