Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220087, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183896

RESUMO

Glires (rodents, lagomorphs and their fossil kin) is the most speciose and arguably most diversified clade of living placentals. Different lineages within the Glires evolved basically opposite chewing movements: a mostly transversal power stroke in lagomorphs, and a mostly proal power stroke in rodents, but the ancestral condition for Glires is still unclear. To address this knowledge gap, we studied the mandibles of Chinese Palaeocene Glires representing the duplicidentate (lagomorph-like; Mimotona) and simplicidentate (rodent-like; Eomylus and Heomys) lineages. To assess the mechanical resistance of mandibles to bending and torsion, we calculated the section modulus. The dentaries differ greatly in morphology and the region where the maximum grinding force was likely applied. The early Palaeocene Mimotona lii and the middle Palaeocene Mimotona robusta and Heomys orientalis all show a pattern of increasing strength moving posteriorly along the mandible, similar to sciurids and the mountain beaver. By contrast, the late Palaeocene Eomylus sp. mandible was strongest in the m1 region, a pattern seen in lagomorphs and the stem placental Zofialestes. Our results indicate the early diversification of mandible structure of Glires, demonstrate a mixture of duplicidentate and simplicidentate characters among the basal Glires and suggest an early occurrence of a lagomorph-like morphotype. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Assuntos
Lagomorpha , Gravidez , Animais , Feminino , Lagomorpha/anatomia & histologia , Roedores , Filogenia , Placenta , Mamíferos , Mandíbula , Sciuridae
2.
Evolution ; 77(6): 1303-1314, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881990

RESUMO

Insular gigantism is an evolutionary phenomenon whereby small animals become bigger on islands compared to their mainland relatives. The abundance of insular giant taxa in the fossil record suggests the presence of a universal "giant niche" present on islands, with resource limitation as a potential driver for this process. However, insular habitats are ecologically diverse, suggesting that island taxa adopt different survival strategies, including adaptations for foraging behaviors. Here, we used finite element analysis to evaluate insular feeding niche adaptations in some of the most extreme examples of insular gigantism: Mediterranean giant dormice. We calculated stress, strain, and mechanical advantage during incisor and molar biting for 3 extinct insular giant species (Leithia melitensis, Hypnomys morpheus, and H. onicensis), an extant giant (Eliomys quercinus ophiusae), and their extant non-giant mainland relative, the generalist-feeder Eliomys quercinus. Our results show that dietary adaptations vary between giant taxa on different islands, and can occur relatively rapidly. Furthermore, the functional mandibular morphology in some insular taxa indicate adaptations moving away from a generalist feeding strategy toward greater trophic specialization. We show that the "insular giant niche" varies between islands and across time periods, arguing against a universal ecological driver for insular gigantism in small mammals.


Assuntos
Gigantismo , Animais , Tamanho Corporal , Fenômenos Biomecânicos , Evolução Biológica , Ecossistema , Mamíferos
3.
R Soc Open Sci ; 10(2): 220587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816846

RESUMO

The process of feeding in mammals is achieved by moving the mandible relative to the cranium to bring the teeth into and out of occlusion. This process is especially complex in rodents which have a highly specialized configuration of jaw adductor muscles. Here, we used the computational technique of multi-body dynamics analysis (MDA) to model feeding in the red (Sciurus vulgaris) and grey squirrel (Sciurus carolinensis) and determine the relative contribution of each jaw-closing muscle in the generation of bite forces. The MDA model simulated incisor biting at different gapes. A series of 'virtual ablation experiments' were performed at each gape, whereby the activation of each bilateral pair of muscles was set to zero. The maximum bite force was found to increase at wider gapes. As predicted, the superficial and anterior deep masseter were the largest contributors to bite force, but the temporalis had only a small contribution. Further analysis indicated that the temporalis may play a more important role in jaw stabilization than in the generation of bite force. This study demonstrated the ability of MDA to elucidate details of red and grey squirrel feeding biomechanics providing a complement to data gathered via in vivo experimentation.

4.
PeerJ ; 10: e14414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518283

RESUMO

Background: The leporid lagomorphs (rabbits and hares) are adapted to running and leaping (some more than others) and consequently have unique anatomical features that distinguish them from ochotonid lagomorphs (pikas) and from their rodent relatives. Two traits that have received some attention are fenestration of the lateral wall of the maxilla and facial tilting. These features are known to correlate with specialised locomotory form in that the faster running species will generally have fenestration that occupies the dorsal and the anteroventral surface of the maxillary corpus and a more acute facial tilt angle. Another feature is an intracranial joint that circumscribes the back of the skull, thought to facilitate skull mobility. This joint separates the anterior portion of the cranium (including the dentition, rostrum and orbit) from the posterior portion of the cranium (which encompasses the occipital and the auditory complex). Aside from the observation that the intracranial joint is absent in pikas (generalist locomotors) and appears more elaborate in genera with cursorial and saltatorial locomotory habits, the evolutionary history, biomechanical function and comparative anatomy of this feature in leporids lacks a comprehensive evaluation. Methodology: The present work analysed the intracranial joint, facial tilting and lateral fenestration of the wall of the maxilla in the context of leporid evolutionary history using a Bayesian inference of phylogeny (18 genera, 23 species) and ancestral state reconstruction. These methods were used to gather information about the likelihood of the presence of these three traits in ancestral groups. Results: Our phylogenetic analyses found it likely that the last common ancestor of living leporids had some facial tilting, but that the last common ancestor of all lagomorphs included in the dataset did not. We found that it was likely that the last common ancestor of living leporids had fenestration that occupies the dorsal, but not the anteroventral, surface of the maxillary corpus. We also found it likely that the last common ancestor of living leporids had an intracranial joint, but that the last common ancestor of all living lagomorphs did not. These findings provide a broader context to further studies of evolutionary history and will help inform the formulation and testing of functional hypotheses.


Assuntos
Lebres , Lagomorpha , Animais , Coelhos , Lagomorpha/anatomia & histologia , Filogenia , Teorema de Bayes , Crânio/diagnóstico por imagem
5.
Nat Commun ; 13(1): 4340, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896591

RESUMO

Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods.


Assuntos
Evolução Biológica , Ecologia , Animais , Tamanho Corporal
6.
Sci Rep ; 12(1): 4997, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322070

RESUMO

European and American minks are very similar in ecology, behavior and morphology. Both species hunt terrestrial vertebrates and aquatic prey, but the American mink is a more generalist predator which, among other factors, allows it to outcompete the European mink in areas where it has been introduced. We used 3D geometric morphometrics and estimates of muscle mechanical advantage to assess the degree of variation in mandibular morphology, and to determine whether such variation reflects dietary differences between the two species. The three main axes of variation represented interspecific differences, a common allometric trajectory between species and sexes, and the interspecific effect of sexual size dimorphism, with males having overall stronger bites than females. Differences in mandible shape and biomechanical parameters suggest that American minks are better equipped for preying on terrestrial vertebrates, while the features seen in European mink could be related to tougher prey, fish capture, or both. Additionally, within each species, the larger specimens of each sex present indicators of a higher percentage of terrestrial prey in their diet. These results indicate a low potential dietary overlap between both species, suggesting that factors other than prey competition may have a role in the decline of the European mink.


Assuntos
Vison , Crânio , Animais , Fenômenos Biomecânicos , Feminino , Cabeça , Masculino , Mandíbula/anatomia & histologia , Crânio/anatomia & histologia
7.
Sci Rep ; 12(1): 3819, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264608

RESUMO

Rodents are characterised by a distinctive masticatory apparatus which includes a single pair of enlarged and continually growing incisors. This morphology, termed diprotodonty, has also independently evolved in a number of other mammals, including the aye-aye. This study examined the functional significance of the internal "root" of the elongated rodent-like incisor. The mandibles of four rodents and an aye-aye were modelled to exhibit incrementally shorter incisor roots. Finite element analysis was used to predict stress and strain patterns across the jaw to determine whether the length of the incisor root contributes to the resistance of mechanical forces encountered in the mandible during incision. It was found that von Mises stresses increase in the region of the mandible local to where the incisor is removed, but that the stress distribution across the wider mandible is only minimally affected. Thus, the long internal incisor appears to play a small role in resisting bending forces close to the incisor alveolus, and may act with the arch-like mandibular shape to strengthen the mandible in this region. However, the impact across the whole mandible is relatively limited, suggesting the highly elongate incisor in diprotodont mammals may be principally driven by other factors such as rapid incisor wear.


Assuntos
Incisivo , Roedores , Animais , Análise de Elementos Finitos , Incisivo/anatomia & histologia , Mandíbula/anatomia & histologia , Mandíbula/cirurgia , Roedores/anatomia & histologia , Raiz Dentária
8.
J Anat ; 240(2): 210-225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569054

RESUMO

European and American minks (Mustela lutreola and Neovison vison, respectively) are very similar in their ecology, behavior, and morphology. However, the American mink is a generalist predator and seems to adapt better to anthropized environments, allowing it to outcompete the European mink in areas where it has been introduced, threatening the survival of the native species. To assess whether morphological differences may be contributing to the success of the American mink relative to the European mink, we analyzed shape variation in the cranium of both species using 3D geometric morphometrics. A set of 38 landmarks and 107 semilandmarks was used to study shape variation between and within species, and to assess how differences in size factored into that variation. Sexual dimorphism in both size and shape was also studied. Significant differences between species were found in cranial shape, but not in size. Relative to American mink, European mink have a shorter facial region with a rounder forehead and wider orbits, a longer neurocranium with less developed crests and processes, and an antero-medially placed tympanic bullae with an anteriorly expanded cranial border. Within species, size-related sexual dimorphism is highly significant, but sexual dimorphism in shape is only significant in American mink, not in European mink. Additionally, two trends common to both species were discovered, one related to allometric changes and another to sexual size dimorphism. Shape changes related to increasing size can be subdivided into two, probably related, groups: increased muscle force and growth. The first group somewhat parallels the differences between both mink species, while the second group of traits includes an anterodorsal expansion of the face, and the neurocranium shifting from a globous shape in small individuals to a dorsoventrally flattened ellipse in the largest ones. Finally, the sexual dimorphism trend, while also accounting for differences in muscle force, seems to be related to the observed dietary differences between males and females. Overall, differences between species and sexes, and shape changes with increasing size, seem to mainly relate to differences in masticatory-muscle volume and therefore muscle force and bite force, which, in turn, relate to a wider range of potential prey (bigger prey, tougher shells). Thus, muscle force (and dietary range) would be larger in American mink than in European mink, in males than in females, and in larger individuals than in smaller ones.


Assuntos
Vison , Crânio , Animais , Força de Mordida , Feminino , Cabeça/anatomia & histologia , Humanos , Masculino , Caracteres Sexuais , Crânio/anatomia & histologia
9.
J R Soc Interface ; 18(180): 20210324, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283941

RESUMO

Measures of attachment or accommodation area on the skeleton are a popular means of rapidly generating estimates of muscle proportions and functional performance for use in large-scale macroevolutionary studies. Herein, we provide the first evaluation of the accuracy of these muscle area assessment (MAA) techniques for estimating muscle proportions, force outputs and bone loading in a comparative macroevolutionary context using the rodent masticatory system as a case study. We find that MAA approaches perform poorly, yielding large absolute errors in muscle properties, bite force and particularly bone stress. Perhaps more fundamentally, these methods regularly fail to correctly capture many qualitative differences between rodent morphotypes, particularly in stress patterns in finite-element models. Our findings cast doubts on the validity of these approaches as means to provide input data for biomechanical models applied to understand functional transitions in the fossil record, and perhaps even in taxon-rich statistical models that examine broad-scale macroevolutionary patterns. We suggest that future work should go back to the bones to test if correlations between attachment area and muscle size within homologous muscles across a large number of species yield strong predictive relationships that could be used to deliver more accurate predictions for macroevolutionary and functional studies.


Assuntos
Força de Mordida , Fósseis , Fenômenos Biomecânicos , Modelos Biológicos , Músculos , Crânio/anatomia & histologia
10.
PeerJ Comput Sci ; 7: e542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084938

RESUMO

This paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed framework consists of point set registration, point correspondence determination, and parametric full-shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically) calculated probability values. These probability values represent the likelihood that, in the absence of a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the observed one. This proposed framework nevertheless possesses a number of limitations, including sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis of 3D shapes is discussed.

12.
Proc Biol Sci ; 288(1945): 20202809, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593183

RESUMO

Biomechanical modelling is a powerful tool for quantifying the evolution of functional performance in extinct animals to understand key anatomical innovations and selective pressures driving major evolutionary radiations. However, the fossil record is composed predominantly of hard parts, forcing palaeontologists to reconstruct soft tissue properties in such models. Rarely are these reconstruction approaches validated on extant animals, despite soft tissue properties being highly determinant of functional performance. The extent to which soft tissue reconstructions and biomechanical models accurately predict quantitative or even qualitative patterns in macroevolutionary studies is therefore unknown. Here, we modelled the masticatory system in extant rodents to objectively test the ability of current muscle reconstruction methods to correctly identify quantitative and qualitative differences between macroevolutionary morphotypes. Baseline models generated using measured soft tissue properties yielded differences in muscle proportions, bite force, and bone stress expected between extant sciuromorph, myomorph, and hystricomorph rodents. However, predictions from models generated using reconstruction methods typically used in fossil studies varied widely from high levels of quantitative accuracy to a failure to correctly capture even relative differences between macroevolutionary morphotypes. Our novel experiment emphasizes that correctly reconstructing even qualitative differences between taxa in a macroevolutionary radiation is challenging using current methods. Future studies of fossil taxa should incorporate systematic assessments of reconstruction error into their hypothesis testing and, moreover, seek to expand primary datasets on muscle properties in extant taxa to better inform soft tissue reconstructions in macroevolutionary studies.


Assuntos
Força de Mordida , Fósseis , Animais , Evolução Biológica , Fenômenos Biomecânicos , Biofísica
13.
Proc Biol Sci ; 287(1938): 20202085, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33143584

RESUMO

Insular gigantism-evolutionary increases in body size from small-bodied mainland ancestors-is a conceptually significant, but poorly studied, evolutionary phenomenon. Gigantism is widespread on Mediterranean islands, particularly among fossil and extant dormice. These include an extant giant population of Eliomys quercinus on Formentera, the giant Balearic genus †Hypnomys and the exceptionally large †Leithia melitensis of Pleistocene Sicily. We quantified patterns of cranial and mandibular shape and their relationships to head size (allometry) among mainland and insular dormouse populations, asking to what extent the morphology of island giants is explained by allometry. We find that gigantism in dormice is not simply an extrapolation of the allometric trajectory of their mainland relatives. Instead, a large portion of their distinctive cranial and mandibular morphology resulted from the population- or species-specific evolutionary shape changes. Our findings suggest that body size increases in insular giant dormice were accompanied by the evolutionary divergence of feeding adaptations. This complements other evidence of ecological divergence in these taxa, which span predominantly faunivorous to herbivorous diets. Our findings suggest that insular gigantism involves context-dependent phenotypic modifications, underscoring the highly distinctive nature of island faunas.


Assuntos
Evolução Biológica , Myoxidae/fisiologia , Adaptação Fisiológica , Animais , Tamanho Corporal , Fósseis
14.
PeerJ ; 8: e8847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231887

RESUMO

The Bathyergidae, commonly known as blesmols or African mole-rats, is a family of rodents well-known for their subterranean lifestyle and tunnelling behaviour. Four of the five extant bathyergid genera (Cryptomys, Fukomys, Georychus and Heliophobius) are chisel-tooth diggers, that is they dig through soil with their enlarged incisors, whereas the remaining genus (Bathyergus) is a scratch-digger, only using its forelimbs for burrowing. Heterocephalus glaber, the naked mole-rat, is also a chisel-tooth digger and was until recently included within the Bathyergidae (as the most basally branching genus), but has now been placed by some researchers into its own family, the Heterocephalidae. Given the importance of the masticatory apparatus in habitat construction in this group, knowledge and understanding of the morphology and arrangement of the jaw-closing muscles in Bathyergidae is vital for future functional analyses. Here, we use diffusible iodine-based contrast-enhanced microCT to reveal and describe the muscles of mastication in representative specimens of each genus of bathyergid mole-rat and to compare them to the previously described musculature of the naked mole-rat. In all bathyergids, as in all rodents, the masseter muscle is the most dominant component of the masticatory musculature. However, the temporalis is also a relatively large muscle, a condition normally associated with sciuromorphous rodents. Unlike their hystricomorphous relatives, the bathyergids do not show an extension of the masseter through the infraorbital foramen on to the rostrum (other than a very slight protrusion in Cryptomys and Fukomys). Thus, morphologically, bathyergids are protrogomorphous, although this is thought to be secondarily derived rather than retained from ancestral rodents. Overall, the relative proportions of the jaw-closing muscles were found to be fairly consistent between genera except in Bathyergus, which was found to have an enlarged superficial masseter and relatively smaller pterygoid muscles. It is concluded that these differences may be a reflection of the behaviour of Bathyergus which, uniquely in the family, does not use its incisors for digging.

15.
R Soc Open Sci ; 6(3): 181317, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31031997

RESUMO

All rodents possess a single pair of enlarged incisors that grow throughout life. This condition (diprotodonty) is characteristic of Rodentia, but is also found in other mammals such as lagomorphs, hyraxes, the aye-aye and common wombat. This study surveyed lower incisor morphology across extant diprotodonts to examine shape variation within and between rodents and other diprotodonts, and to determine if tooth shape varies in a manner predictable from mechanics. Six linear and area variables were recorded from microCT scans of the mandibles of 33 diprotodont mammals. The curvature of the rodent lower incisors, as measured by the proportion of a circle it occupies, was shown to vary between 20 and 45%, with non-Glires taxa falling outside this range. Relative lengths of the portions of the incisor within and external to the mandible were not significantly correlated when the overall size was taken into account. Cross-sectional geometry of the incisor was significantly correlated with the external length of the incisor. Overall, incisor morphology was shown to vary in a way predictable from ecology and mechanics, in order to resist bending. Among non-rodents, lagomorph incisors closely resemble those of rodents, and, relative to rodents, hyrax and wombat incisors are somewhat smaller but aye-aye incisors are much more extreme in morphology.

16.
R Soc Open Sci ; 6(3): 181536, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032010

RESUMO

Multituberculate mammals thrived during the Mesozoic, but their diversity declined from the mid-late Paleocene onwards, becoming extinct in the late Eocene. The radiation of superficially similar, eutherian rodents has been linked to multituberculate extinction through competitive exclusion. However, characteristics providing rodents with a supposed competitive advantage are currently unknown and comparative functional tests between the two groups are lacking. Here, a multifaceted approach to craniomandibular biomechanics was taken to test the hypothesis that superior skull function made rodents more effective competitors. Digital models of the skulls of four extant rodents and the Upper Cretaceous multituberculate Kryptobaatar were constructed and used (i) in finite-element analysis to study feeding-induced stresses, (ii) to calculate metrics of bite force production and (iii) to determine mechanical resistances to bending and torsional forces. Rodents exhibit higher craniomandibular stresses and lower resistances to bending and torsion than the multituberculate, apparently refuting the competitive exclusion hypothesis. However, rodents optimize bite force production at the expense of higher skull stress and we argue that this is likely to have been more functionally and selectively important. Our results therefore provide the first functional lines of evidence for potential reasons behind the decline of multituberculates in the changing environments of the Paleogene.

17.
J Morphol ; 280(2): 176-183, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30570152

RESUMO

There are two main (but not mutually exclusive) methods by which subterranean rodents construct burrows: chisel-tooth digging, where large incisors are used to dig through soil; and scratch digging, where forelimbs and claws are used to dig instead of incisors. A previous study by the authors showed that upper incisors of chisel-tooth diggers were better adapted to dig but the overall cranial morphology within the rodent sample was not significantly different. This study analyzed the lower incisors and mandibles of the specimens used in the previous study to show the impact of chisel-tooth digging on the rodent mandible. We compared lower incisors and mandibular shape of chisel-tooth digging rodents with nonchisel-tooth digging rodents to see if there were morphological differences between the two groups. The shape of incisors was quantified using incisor radius of curvature and second moment of area (SMA). Mandibular shape was quantified using landmark based geometric morphometrics. We found that lower incisor shape was strongly influenced by digging group using a Generalized Phylogenetic ancova (analysis of covariance). A phylogenetic Procrustes anova (analysis of variance) showed that mandibular shape of chisel-tooth digging rodents was also significantly different from nonchisel-tooth digging rodents. The phylogenetic signal of incisor radius of curvature was weak, whereas that of incisor SMA and mandibular shape was significant. This is despite the analyses revealing significant differences in the shape of both mandibles and incisors between digging groups. In conclusion, we showed that although the mandible and incisor of rodents are influenced by function, there is also a degree of phylogenetic affinity that shapes the rodent mandibular apparatus.


Assuntos
Evolução Biológica , Mandíbula/anatomia & histologia , Roedores/anatomia & histologia , Pontos de Referência Anatômicos , Animais , Incisivo/anatomia & histologia , Filogenia , Análise de Componente Principal , Crânio/anatomia & histologia
18.
Biol Lett ; 14(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068543

RESUMO

Convergence-the independent evolution of similar phenotypes in distantly related clades-is a widespread and much-studied phenomenon. An often-cited, but hitherto untested, case of morphological convergence is that between the aye-aye and squirrels. The aye-aye (Daubentonia madagascariensis) is a highly unusual lemuriform primate that has evolved a dentition similar to that of rodents: it possesses large, ever-growing incisors which it uses to strip the bark from trees in order to feed on wood-boring beetle larvae. Indeed, such is the similarity that some of the earliest classifications of the aye-aye placed it in the squirrel genus Sciurus Here, we aimed to test the degree of convergence between the skulls and lower jaws of squirrels and the aye-aye. Three-dimensional landmarks were recorded from the crania and mandibles of 46 taxa representing the majority of families in the Euarchontoglires. Results were plotted as phylomorphospaces and convergence measures were calculated. The convergence between squirrels and the aye-aye was shown to be statistically significant for both the cranium and mandible, although the mandibles seem to converge more closely in shape. The convergence may indicate strong functional drivers of morphology in these taxa, i.e. the use of the incisors to produce high bite forces during feeding. Overall, we have shown that this classic case of convergence stands up to quantitative analysis.


Assuntos
Comportamento Alimentar/fisiologia , Filogenia , Strepsirhini/anatomia & histologia , Strepsirhini/classificação , Animais , Besouros , Larva , Mandíbula/anatomia & histologia , Sciuridae/anatomia & histologia , Sciuridae/classificação , Crânio/anatomia & histologia
19.
PeerJ ; 5: e3741, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875081

RESUMO

The mammalian jaw is often modelled as a third-class lever for the purposes of biomechanical analyses, owing to the position of the resultant muscle force between the jaw joint and the teeth. However, it has been proposed that in some rodents the jaws operate as a second-class lever during distal molar bites, owing to the rostral position of the masticatory musculature. In particular, the infraorbital portion of the zygomatico-mandibularis (IOZM) has been suggested to be of major importance in converting the masticatory system from a third-class to a second-class lever. The presence of the IOZM is diagnostic of the hystricomorph rodents, and is particularly well-developed in Pedetes capensis, the South African springhare. In this study, finite element analysis (FEA) was used to assess the lever mechanics of the springhare masticatory system, and to determine the function of the IOZM. An FE model of the skull of P. capensis was constructed and loaded with all masticatory muscles, and then solved for biting at each tooth in turn. Further load cases were created in which each masticatory muscle was removed in turn. The analyses showed that the mechanical advantage of the springhare jaws was above one at all molar bites and very close to one during the premolar bite. Removing the IOZM or masseter caused a drop in mechanical advantage at all bites, but affected strain patterns and cranial deformation very little. Removing the ZM had only a small effect on mechanical advantage, but produced a substantial reduction in strain and deformation across the skull. It was concluded that the masticatory system of P. capensis acts as a second class lever during bites along almost the entire cheek tooth row. The IOZM is clearly a major contributor to this effect, but the masseter also has a part to play. The benefit of the IOZM is that it adds force without substantially contributing to strain or deformation of the skull. This may help explain why the hystricomorphous morphology has evolved multiple times independently within Rodentia.

20.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...