Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849084

RESUMO

BACKGROUND: Hemophilia A arises from dysfunctional or deficient coagulation factor VIII (FVIII) and leads to inefficient fibrin clot formation and uncontrolled bleeding events. The development of antibody inhibitors is a clinical complication in hemophilia A patients receiving FVIII replacement therapy. LE2E9 is an anti-C1 domain inhibitor previously isolated from a mild/moderate hemophilia A patient and disrupts FVIII interactions with VWF and FIXa, though the intermolecular contacts that underpin LE2E9-mediated FVIII neutralization are undefined. OBJECTIVE: To determine the structure of the complex between FVIII and LE2E9 and characterize its mechanism of inhibition. METHODS: FVIII was bound to the antigen binding fragment (Fab) of NB2E9, a recombinant construct of LE2E9, and its structure was determined by cryogenic electron microscopy (cryo-EM). RESULTS: This report communicates the 3.46 Å structure of FVIII bound to NB2E9, with its epitope comprised of FVIII residues S2040-Y2043, K2065-W2070, and R2150-H2155. Structural analysis reveals that the LE2E9 epitope overlaps with portions of the epitope for 2A9, a murine-derived inhibitor, suggesting these residues represent a shared antigenic region on the C1 domain between FVIII-/- mice and hemophilia A patients. Furthermore, the FVIII:NB2E9 structure elucidates the orientation of the LE2E9 glycan, illustrating how the glycan sterically blocks interactions between the FVIII C1 domain and the VWF D' domain. A putative model of the FVIIIa:FIXa complex suggests potential clashing between the NB2E9 glycan and FIXa light chain. CONCLUSION: These results describe an antigenic "hot-spot" on the FVIII C1 domain and provide a structural basis for engineering FVIII replacement therapeutics with reduced antigenicity.

2.
J Vis Exp ; (198)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37677022

RESUMO

Metrology - the science of measure - is a subject few biological scientists are taught about in their training to their detriment; the application of simple standardization processes to everyday working practices provides confidence in data and reproducibility over distance and time. This method demonstrates how to standardize a core laboratory experiment used widely in hemostasis research and clinical practice, specifically, measuring responses to the platelet collagen receptor (glycoprotein [GP]VI) agonist collagen-related peptide, cross-linked (CRP-XL) by light transmission aggregometry (LTA). Using this approach will ensure intra-lab reproducibility and inter-lab harmonization, regardless of agonist stock or supplier. Importantly, this method is applicable to other platelet agonists and, indeed, many other biological molecules and bioassays. The process outlined below involves making a 6-8 point dilution series of the 'standard' and the 'test' (the material you are checking) and running them side by side in a chosen assay (in this case, LTA). CRP-XL is used at mass/volume concentrations, but not every material gives the same biological activity at a given concentration, so a dilution series is made to compare the standard and test material and determine what concentration is needed to give equivalent activity. The dilution series must span 0-100% aggregation. Data is plotted using non-linear regression, and the EC50 value of each sample (standard and test) is determined. To assign activity, divide the EC50 value of the standard by that of the test to determine how much more or less potent it is and adjust the concentration accordingly. This approach will ensure that the same biological 'activity' is added to the assay time and time again.


Assuntos
Bioensaio , Plaquetas , Humanos , Reprodutibilidade dos Testes , Pessoal de Saúde
3.
Blood ; 142(2): 197-201, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192299

RESUMO

The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Fator de von Willebrand/metabolismo
4.
Br J Haematol ; 193(5): 976-987, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973229

RESUMO

The development of anti-drug antibodies (ADAs) is a serious outcome of treatment strategies involving biological medicines. Coagulation factor VIII (FVIII) is used to treat haemophilia A patients, but its immunogenicity precludes a third of severe haemophiliac patients from receiving this treatment. The availability of patient-derived anti-drug antibodies can help us better understand drug immunogenicity and identify ways to overcome it. Thus, there were two aims to this work: (i) to develop and characterise a panel of recombinant, patient-derived, monoclonal antibodies covering a range of FVIII epitopes with varying potencies, kinetics and mechanism of action, and (ii) to demonstrate their applicability to assay development, evaluation of FVIII molecules and basic research. For the first objective we used recombinant antibodies to develop a rapid, sensitive, flexible and reproducible ex vivo assay that recapitulates inhibitor patient blood using blood from healthy volunteers. We also demonstrate how the panel can provide important information about the efficacy of FVIII products and reagents without the need for patient or animal material. These materials can be used as experimental exemplars or controls, as well as tools for rational, hypothesis-driven research and assay development in relation to FVIII immunogenicity and FVIII-related products.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Inibidores dos Fatores de Coagulação Sanguínea/química , Fator VIII/química , Hemofilia A/sangue , Anticorpos Monoclonais/sangue , Anticorpos Neutralizantes/sangue , Inibidores dos Fatores de Coagulação Sanguínea/sangue , Humanos , Proteínas Recombinantes/química
5.
J Thromb Haemost ; 19(8): 1907-1913, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914406

RESUMO

BACKGROUND: The coagulation factors (F)V and VIII are homologous proteins that support hemostasis through their regulation of FX activity. Hemophilia A (HA) patients have reduced FVIII activity and a prolonged bleeding time that is corrected through the administration of exogenous FVIII. Around one-third of severe HA patients develop FVIII neutralizing antibodies, known as "inhibitors," which neutralize FVIII activity and preclude them from further FVIII therapy. OBJECTIVES: We hypothesized that, based on the degree of homology between FV and FVIII (~40%), FVIII-neutralizing antibodies could cross react with FV. To test this hypothesis, a panel of recombinant, patient-derived, FVIII-neutralizing antibodies were screened for cross-reactivity against FV. METHODS: Factor V and FVIII activity was measured using one-stage clotting assays; structural analysis was carried out using a structural approach. RESULTS: We detected FV neutralizing activity with the anti-FVIII A2 domain antibody NB11B2. Because this antibody was derived from an HA inhibitor patient, FV-neutralizing activity was then evaluated in a number of HA inhibitor patient plasma samples; nine alloimmune samples had FV-neutralizing activity whereas no FV neutralizing activity was found in the two autoimmune samples available. We next examined the degree of surface homology between FV and FVIII and found that structural similarity could explain the cross reactivity of the anti-A2 antibody and likely accounts for the cross reactivity we observed in patient samples. CONCLUSIONS: Although this novel observation is of interest, further work will be needed to determine whether FV neutralization in HA patient samples contributes to their bleeding diathesis.


Assuntos
Fator VIII , Hemofilia A , Testes de Coagulação Sanguínea , Hemofilia A/tratamento farmacológico , Hemostasia , Humanos , Tempo de Protrombina
6.
Res Pract Thromb Haemost ; 4(1): 54-63, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989085

RESUMO

BACKGROUND: Microfluidic clotting assays permit drug action studies for hemophilia therapeutics under flow. However, limited availability of patient samples and Inter-donor variability limit the application of such assays, especially with many patients on prophylaxis. OBJECTIVE: To develop approaches to phenocopy hemophilia using modified healthy blood in microfluidic assays. METHODS: Corn trypsin inhibitor (4 µg/mL)-treated healthy blood was dosed with either anti-factor VIII (FVIII; hemophilia A model) or a recombinant factor IX (FIX) missense variant (FIX-V181T; hemophilia B model). Treated blood was perfused at 100 s-1 wall shear rate over collagen/tissue factor (TF) or collagen/factor XIa (FXIa). RESULTS: Anti-FVIII partially blocked fibrin production on collagen/TF, but completely blocked fibrin production on collagen/FXIa, a phenotype reversed with 1 µmol/L bispecific antibody (emicizumab), which binds FIXa and factor X. As expected, emicizumab had no significant effect on healthy blood (no anti-FVIII present) perfused over collagen/FXIa. The efficacy of emicizumab in anti-FVIII-treated healthy blood phenocopied the action of emicizumab in the blood of a patient with hemophilia A perfused over collagen/FXIa. Interestingly, a patient-derived FVIII-neutralizing antibody reduced fibrin production when added to healthy blood perfused over collagen/FXIa. For low TF surfaces, reFIX-V181T (50 µg/mL) fully blocked platelet and fibrin deposition, a phenotype fully reversed with anti-TFPI. CONCLUSION: Two new microfluidic hemophilia A and B models demonstrate the potency of anti-TF pathway inhibitor, emicizumab, and a patient-derived inhibitory antibody. Using collagen/FXIa-coated surfaces resulted in reliable and highly sensitive hemophilia models.

7.
PLoS Biol ; 17(6): e3000338, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220076

RESUMO

Both basic and translational research are continuously evolving, but the principles that underpin research integrity remain constant. These include rational, hypothesis-driven, and adequately planned and controlled science, which is carried out openly, honestly, and ethically. An important component of this should be minimising experimental irreproducibility. Biological systems, in particular, are inherently variable due to the nature of cells and tissues, as well as the complex molecules within them. As a result, it is important to understand and identify sources of variability and to strive to minimise their influence. In many instances, the application of metrology (the science of measurement) can play an important role in ensuring good quality research, even within biological systems that aren't always amenable to many of the metrological concepts applied in other fields. Here, we introduce the basic concepts of metrology in relation to biological systems and promote the application of these principles to help avoid potentially costly mistakes in both basic and translational research. We also call on funders to encourage the uptake of metrological principles, as well as provide funding and support for later engagement with regulatory bodies.


Assuntos
Reprodutibilidade dos Testes , Projetos de Pesquisa/normas , Animais , Viés , Biologia/métodos , Biologia/normas , Humanos , Padrões de Referência , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/normas , Pesos e Medidas/normas
8.
Blood ; 129(26): 3407-3418, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28465343

RESUMO

Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbß3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.


Assuntos
Motivo de Inibição do Imunorreceptor Baseado em Tirosina/fisiologia , Animais , Humanos , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Transdução de Sinais
9.
PLoS One ; 11(10): e0163006, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716777

RESUMO

Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Tiorredoxinas/farmacologia , Trombose/tratamento farmacológico , Benzotiazóis/farmacologia , Testes de Coagulação Sanguínea/métodos , Plaquetas/metabolismo , Dissulfetos/farmacologia , Humanos , Hidroquinonas/farmacologia , Imidazóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária/métodos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Colágeno/metabolismo , Ristocetina/farmacologia , Trombose/metabolismo , Fator de von Willebrand/metabolismo
10.
PLoS One ; 10(11): e0142538, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26551971

RESUMO

Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.


Assuntos
Plaquetas/fisiologia , Placenta/fisiopatologia , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/fisiopatologia , Trofoblastos/fisiologia , Adulto , Aspirina/farmacologia , Plaquetas/patologia , Estudos de Casos e Controles , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Placenta/patologia , Ativação Plaquetária , Agregação Plaquetária/efeitos dos fármacos , Pré-Eclâmpsia/patologia , Gravidez , Trombose/etiologia , Trofoblastos/patologia
11.
PLoS One ; 9(6): e101209, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971515

RESUMO

Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing.


Assuntos
Simulação de Acoplamento Molecular , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Cardiotônicos/química , Cardiotônicos/farmacologia , Cinanserina/química , Cinanserina/farmacologia , Humanos , Losartan/química , Losartan/farmacologia , Dados de Sequência Molecular , Ativação Plaquetária , Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química
12.
PLoS One ; 7(11): e49543, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185356

RESUMO

Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50) for both CRP and collagen.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 6/química , Receptores Imunológicos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biotinilação , Plaquetas/metabolismo , Células COS , Cricetinae , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Mutagênese , Peptídeos/química , Fosfolipase C gama/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Quinase Syk , Tirosina/química
13.
Biochem J ; 441(1): 435-42, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21967541

RESUMO

Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.


Assuntos
Plaquetas/metabolismo , NADP/análogos & derivados , Ativação Plaquetária/fisiologia , Plaquetas/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Carbolinas/farmacologia , Proteínas de Transporte/metabolismo , Humanos , NADP/metabolismo , Peptídeos/metabolismo , Piperazinas/farmacologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trombina/farmacologia
14.
PLoS One ; 4(8): e6752, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19707596

RESUMO

BACKGROUND: Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division. PRINCIPAL FINDINGS: The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation. CONCLUSIONS: We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.


Assuntos
Proteínas de Ciclo Celular/genética , Divisão Celular/genética , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Sequência de Bases , Primers do DNA , Células HeLa , Humanos , Imuno-Histoquímica , Miocárdio/citologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Ratos , Quinase 1 Polo-Like
15.
J Mol Cell Cardiol ; 42(4): 706-21, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17362983

RESUMO

Cardiac repair following myocardial injury is restricted due to the limited proliferative potential of adult cardiomyocytes. The ability of mammalian cardiomyocytes to proliferate is lost shortly after birth as cardiomyocytes withdraw from the cell cycle and differentiate. We do not fully understand the molecular and cellular mechanisms that regulate this cell cycle withdrawal, although if we could it might lead to the discovery of novel therapeutic targets for improving cardiac repair following myocardial injury. For the last decade, researchers have investigated cardiomyocyte cell cycle control, commonly using transgenic mouse models or recombinant adenoviruses to manipulate cell cycle regulators in vivo or in vitro. This review discusses cardiomyocyte cell cycle regulation and summarises recent data from studies manipulating the expressions and activities of cell cycle regulators in cardiomyocytes. The validity of therapeutic strategies that aim to reinstate the proliferative potential of cardiomyocytes to improve myocardial repair following injury will be discussed.


Assuntos
Ciclo Celular , Cardiopatias/patologia , Cardiopatias/terapia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Miócitos Cardíacos/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Biochem J ; 382(Pt 2): 411-6, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15253691

RESUMO

Repair of the mature mammalian myocardium following injury is impaired by the inability of the majority of cardiomyocytes to undergo cell division. We show that overexpression of the cyclin B1-CDC2 (cell division cycle 2 kinase) complex re-initiates cell division in adult cardiomyocytes. Thus strategies targeting the cyclin B1-CDC2 complex might re-initiate cell division in mature cardiomyocytes in vivo and facilitate myocardial regeneration following injury.


Assuntos
Proteína Quinase CDC2/fisiologia , Proliferação de Células , Ciclina B/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Animais , Ciclina B1 , Masculino , Ratos , Ratos Wistar
17.
J Biol Chem ; 278(24): 21388-94, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12682052

RESUMO

Growth of the post-natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re-activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G1/S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G1/S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F-1, 3, and 4 and DP-1 and DP-2 were down-regulated during development to undetectable levels in adult myocytes. Interestingly, E2F-5 protein levels were substantially up-regulated during development. In contrast, an induction of E2F-1, 3, and 4 and the DP-1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F-5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F-DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non-stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F-DP heterodimerization prevented the induction of hypertrophic markers (atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Miocárdio/citologia , Miocárdio/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Células 3T3 , Animais , Ciclina E/genética , Dimerização , Regulação para Baixo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fator de Transcrição E2F5 , Feminino , Citometria de Fluxo , Fase G1 , Hipertrofia , Hipertrofia Ventricular Esquerda , Immunoblotting , Luciferases/metabolismo , Camundongos , Peptídeos/química , Fenilefrina/farmacologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...