Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 78(3): 1113-26, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23327108

RESUMO

The results are reported of an ab initio study of the addition of LiAlH(4) to acetonitrile and malononitrile at the MP2(full)/6-311+G* level considering the effects of electron correlation at higher levels up to QCISD(T)/6-311++G(2df,2pd) and including ether solvation. All imide (RCH(2)CH═N(-)) and enamide (RCH(-)CH═NH ↔ RCH═CHN(-)H) adducts feature strong interactions between the organic anion and both Li(+) and AlH(3). The relative stabilities of the tautomeric LAH adducts are compared to the tautomer preference energies of the LiH adducts and of the hydride adducts of the nitriles. Alane affinities were determined for the lithium ion pairs formed by LiH addition to the nitriles. The results show that alane binding greatly affects the imide-enamide equilibria and that alane complexation might even provide a thermodynamic preference for the imide intermediate. While lithium enamides of malononitrile are much more stable than lithium imides, alane binding dramatically reduces the enamide preference so that both tautomers are present at equilibrium. Implications are discussed regarding to the propensity for multiple hydride reductions and with regard to the mechanism of reductive nitrile dimerization. A detailed mechanism is proposed for the formation of 2-aminonicotinonitrile (2ANN) in the LAH reduction of malononitrile.

2.
J Org Chem ; 76(10): 3987-96, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21526764

RESUMO

The thermal (E)/(Z)-isomerization of 3-methyl-4-pyrimidinimine, 3MePMI, has been studied in the gas phase at MP2/6-31G* and with the inclusion of medium effects using the polarizable continuum method, PCM(MP2/6-31G*), and the solvation model density method, SMD(MP2/6-31G*). For the free molecule and for 3MePMI in each of 14 solvents, the structures were determined of the (E)- and (Z)-isomers, of the transition state structure for isomerization ITS by asymmetric N-inversion, and of the second-order saddle point structure (SOSP) associated with in-plane N-inversion. The results predict a reduction of the (E)-isomer preference energy of 3MePMI, an increase of the deformation energy ΔE(def) = E(SOSP) - E(ITS), and an increase of the activation barrier E(act)(Z → E) with increasing solvent polarity. Electronic effects associated with N-inversion are analyzed using molecular orbital theory, results of population analysis, and electrostatic potential maps. The molecular dipole moments are superior parameters for the description of electronic relaxation in the imine basin during N-inversion. In particular, the analysis of dipole moments explains the compatibility of the increase of local CN polarity during N-inversion with the negative solvation effect on the activation barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...