Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5028, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866748

RESUMO

Cholesterol-dependent cytolysins (CDCs) comprise a large family of pore-forming toxins produced by Gram-positive bacteria, which are used to attack eukaryotic cells. Here, we functionally characterize a family of 2-component CDC-like (CDCL) toxins produced by the Gram-negative Bacteroidota that form pores by a mechanism only described for the mammalian complement membrane attack complex (MAC). We further show that the Bacteroides CDCLs are not eukaryotic cell toxins like the CDCs, but instead bind to and are proteolytically activated on the surface of closely related species, resulting in pore formation and cell death. The CDCL-producing Bacteroides is protected from the effects of its own CDCL by the presence of a surface lipoprotein that blocks CDCL pore formation. These studies suggest a prevalent mode of bacterial antagonism by a family of two-component CDCLs that function like mammalian MAC and that are wide-spread in the gut microbiota of diverse human populations.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Humanos , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Citotoxinas/metabolismo , Microbioma Gastrointestinal , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/imunologia , Animais , Células Eucarióticas/metabolismo
2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746121

RESUMO

Although horizontal gene transfer is pervasive in the intestinal microbiota, we understand only superficially the roles of most exchanged genes and how the mobile repertoire affects community dynamics. Similarly, little is known about the mechanisms underlying the ability of a community to recover after a perturbation. Here, we identified and functionally characterized a large conjugative plasmid that is one of the most frequently transferred elements among Bacteroidales species and is ubiquitous in diverse human populations. This plasmid encodes both an extracellular polysaccharide and fimbriae, which promote the formation of multispecies biofilms in the mammalian gut. We use a hybridization-based approach to visualize biofilms in clarified whole colon tissue with unprecedented 3D spatial resolution. These biofilms increase bacterial survival to common stressors encountered in the gut, increasing strain resiliency, and providing a rationale for the plasmid's recent spread and high worldwide prevalence.

3.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496653

RESUMO

Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.

4.
Cell Host Microbe ; 32(3): 322-334.e9, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38423015

RESUMO

Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Inflamação , DNA
5.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662397

RESUMO

DNA transfer is ubiquitous in the gut microbiota, especially among species of Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. Here, we show that acquisition of a ubiquitous integrative and conjugative element encoding an antagonistic system shuts down the native contact-dependent antagonistic system of Bacteroides fragilis . Despite inactivating the native antagonism system, mobile element acquisition increases fitness of the B. fragilis transconjugant over its progenitor by arming it with a new weapon. This DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members containing the same element yet is armed for communal defense.

6.
Nat Commun ; 13(1): 4258, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871068

RESUMO

Phocaeicola vulgatus is one of the most abundant and ubiquitous bacterial species of the human gut microbiota, yet a comprehensive analysis of antibacterial toxin production by members of this species has not been reported. Here, we identify and characterize a previously undescribed antibacterial protein. This toxin, designated BcpT, is encoded on a small mobile plasmid that is largely confined to strains of the closely related species Phocaeicola vulgatus and Phocaeicola dorei. BcpT is unusual in that it requires cleavage at two distinct sites for activation, and we identify bacterial proteases that perform this activation. We further identify BcpT's receptor as the Lipid A-core glycan, allowing BcpT to target species of other Bacteroidales families. Exposure of cells to BcpT induces a response involving an unusual sigma/anti-sigma factor pair that is likely triggered by cell envelope stress, resulting in the expression of genes that partially protect cells from multiple antimicrobial toxins.


Assuntos
Anti-Infecciosos , Proteínas de Bactérias , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides , Bacteroidetes/genética , Humanos , Plasmídeos/genética
7.
J Bacteriol ; 204(7): e0012222, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35735993

RESUMO

Three distinct genetic architectures (GAs) of Type VI secretion systems (T6SSs) have been described in gut Bacteroidales species, each with unique genes and characteristics. Unlike the GA3 T6SSs, potent antagonism has not yet been demonstrated for the GA1 or GA2 T6SSs. We previously showed that the GA2 T6SS loci are contained on integrative and conjugative elements and that there are five subtypes. Collectively, GA2 are the most prevalent Bacteroidales T6SSs in the human populations analyzed. In this study, we provide a comprehensive bioinformatic analysis of the three variable regions of GA2 T6SS loci, which encode toxic effector and immunity proteins. In total, we identified 63 distinct effectors encoded within 31 nonredundant GA2 loci, 18 of which do not have described motifs or predicted functions. We provide experimental evidence for toxin activity for four different GA2 effectors, showing that each functions only when present in the periplasm, and experimentally confirm their cognate immunity proteins. Our data demonstrate that each GA2 locus encodes at least three distinct effectors with targets in both the cytoplasm and the periplasm. The data also suggest that the effectors of a given locus are loaded onto the tube by different mechanisms, which may allow all three effectors encoded within a single GA2 locus with distinct antibacterial activity to be loaded onto a single T6 tube, increasing the antagonistic effect. IMPORTANCE Humans are colonized with many gut Bacteroidales species at high density, allowing for extensive opportunities for contact-dependent antagonism. To begin to understand the antagonistic potential of the GA2 T6SSs of the gut Bacteroidales, we performed bioinformatic and experimental analyses of the three divergent regions containing the toxin effector and immunity genes. We show that each GA2 T6SS locus encodes at least three distinct toxic effectors including toxins linked to Rhs and Hcp with cytoplasmic targets, and unlinked effectors with targets in the periplasm. The diversity and modality of effectors exceeds that of the GA1 or GA3 T6SS loci (M. J. Coyne, K. G. Roelofs, and L. E. Comstock, BMC Genomics 17:58, 2016, https://doi.org/10.1186/s12864-016-2377-z) and suggests that these T6SSs have the potential to be potent antibacterial weapons in the human gut.


Assuntos
Sistemas de Secreção Tipo VI , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo , Humanos , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
8.
Vet Comp Oncol ; 20(4): 846-853, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35718995

RESUMO

Following the introduction of the symmetric dimethylarginine (SDMA) immunoassay, cases were reported where the SDMA concentration was markedly increased above the reference interval (RI) with neither concurrent increases in serum creatinine (Cr) concentrations nor clinical signs of kidney disease. Many of these animals were also concurrently diagnosed with cancer, most commonly lymphoma. The purpose of the study was to evaluate the association of increased SDMA in dogs and cats with lymphoma and other cancers as compared with age- and breed-matched non-tumour controls. In this retrospective case-control study, serum chemistry results from 1804 tumour cases, and age- and breed-matched non-tumour control animals were used. Matched-pair odds ratios between animals diagnosed with neoplasms and non-tumour controls for dichotomized SDMA values were determined by tumour type. SDMA concentrations were significantly higher in dogs and cats with lymphoma (p < .0001) compared with non-tumour controls. The odds ratio for increased SDMA concentrations in dogs with lymphoma was 10.0 (95% CI, 5.98-16.72) and for cats with lymphoma was 3.04 (95% CI 1.95-4.73). A significant number of canine and feline lymphoma cases had an increased SDMA concentration not associated with an increased Cr concentration (p < .001). Canine and feline lymphoma patients have an increased odds of having a SDMA concentration above the RI at diagnosis. Further characterization and evaluation of dogs and cats with lymphoma is required to help understand the mechanism(s) and the clinical significance of these alterations.


Assuntos
Doenças do Gato , Doenças do Cão , Neoplasias , Gatos , Cães , Animais , Estudos Retrospectivos , Estudos de Casos e Controles , Biomarcadores , Arginina , Neoplasias/veterinária
9.
PLoS One ; 17(5): e0269085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622875

RESUMO

Symmetric dimethylarginine (SDMA) is a serum biomarker of excretory renal function which consistently correlates with glomerular filtration rate (GFR) across multiple species including rats, dogs, and humans. In human and veterinary clinical settings SDMA demonstrates enhanced sensitivity for detection of declining renal function as compared to other serum biomarkers, but application in preclinical study designs thus far has been limited. The purpose of this study was to determine the performance of serum SDMA in a rat passive Heyman nephritis model of glomerulopathy. In addition to SDMA other biomarkers of excretory renal function were measured including serum creatinine (sCr), blood urea nitrogen (BUN), and cystatin C along with creatinine clearance. Urinary renal biomarkers including microalbumin (µALB), clusterin (CLU), cystatin C, kidney injury marker-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were also measured. PHN was induced using commercial sheep anti-Fx1A serum. Tissue, serum, and urine were collected from groups of control and anti-Fx1A-treated animals for biomarker evaluation, hematology, urinalysis, serum biochemistry, and histologic examination of kidney. Over the course of a 28-day study, concentrations of the urinary biomarkers µALB, CLU, cystatin C, NGAL, KIM-1 and the serum biomarker cystatin C increased significantly in anti-Fx1A-treated rats as compared to controls but no significant increase in serum SDMA, sCr, BUN, or creatinine clearance were noted in anti-Fx1A-treated rats. Given lack of direct GFR measurement or significant change in the renal function biomarkers sCr, BUN, and creatinine clearance, it is unclear if GFR differed significantly between control and anti-Fx1A-treated rats in this study, though urinary biomarkers and histopathologic findings supported renal injury in anti-Fx1A-treated rats over the time course investigated. This study is among the first to investigate serum SDMA in a rat model relevant to preclinical safety assessment and serves to inform future experimental designs and biomarker selection when evaluation of glomerular injury is of priority.


Assuntos
Glomerulonefrite Membranosa , Animais , Arginina/análogos & derivados , Biomarcadores , Creatinina , Cistatina C , Cães , Rim/fisiologia , Lipocalina-2 , Nitrogênio , Ratos , Ovinos
10.
Kidney360 ; 3(2): 341-356, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35373128

RESUMO

Symmetric dimethylarginine (SDMA) is an excretory renal function biomarker shown to correlate well with glomerular filtration rate in dogs, cats, humans, and rats. The objectives of this study were to determine utility of serum SDMA as a renal biomarker in a rat model of gentamicin-induced renal injury and to provide validation of a commercially available SDMA immunoassay for rat serum. Rats were randomly assigned to one of three dose levels of gentamicin (20, 50, or 100 mg/kg) or a vehicle control group and dosed once daily by subcutaneous injection for either four or ten days. Serum and urine renal biomarker evaluation, including serum SDMA, hematologic and serum biochemical analysis, urinalysis, and histologic examination of kidney, were performed. Before biologic validation, analytic validation of the SDMA immunoassay for rat serum was performed, including assessment of assay accuracy, precision, analytical sensitivity, linearity, analyte stability, and interference testing. Among markers of excretory renal function, SDMA and serum creatinine increased earliest and at the lowest gentamicin concentrations and were significantly increased in both the 50- and 100- mg/kg dose levels in the four- and ten-dose treatment groups compared with controls. Time- and dose-dependent increases were noted for all urinary biomarkers investigated in this study, with microalbumin being most responsive and osteopontin least responsive for detection of gentamicin-induced injury across dose levels and schedules investigated. The SDMA immunoassay met all set quality requirements assessed in analytical validation. This study is the first to investigate performance of serum SDMA compared with other excretory renal function markers in a rat gentamicin acute toxicity model. In this study, serum SDMA was an earlier biomarker for detection of gentamicin-induced toxicity than serum cystatin C, BUN, and creatinine clearance. The SDMA immunoassay provides a reliable commercially available assay for future renal investigations in rat models.


Assuntos
Doenças do Cão , Insuficiência Renal Crônica , Animais , Arginina/análogos & derivados , Biomarcadores , Cães , Gentamicinas/toxicidade , Rim/fisiologia , Ratos
11.
J Zoo Wildl Med ; 53(1): 200-203, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35339165

RESUMO

Renal disease is well documented in nondomestic felids and is monitored and diagnosed by serum concentration of blood urea nitrogen, creatinine, and phosphorous. Symmetric dimethylarginine (SDMA) has proven to be an earlier and more sensitive biomarker for the assessment of glomerular filtration rate. Although SDMA is commonly measured in nondomestic felids, information concerning the validity of the assay is lacking. The purpose of the study was to perform a method comparison between high-throughput immunoassay and the reference method, liquid chromatography-tandem mass spectrometry (LC-MS/MS), to quantify SDMA concentrations in tiger blood samples. Concentrations of SDMA were measured for 81 individual tiger samples. The SDMA immunoassay demonstrated excellent correlation to the LC-MS/MS reference method. A Passing and Bablok linear regression analysis had a slope of 1.03 (95% CI, 0.99-1.11), an intercept of 1.64 (95% CI, 0.46-2.34), and a Pearson R= 0.99. The mean bias was 1.53 µg/dl (95% CI, 0.63-2.42 µg/dl), and the limit of agreement was ±7.96 µg/dl. The degree of bias is within established acceptance criteria of 1-3 µg/dl for the immunoassay. Although this study provides good evidence of the utility of the immunoassay to measure SDMA in tiger serum and plasma, further assay validation is recommended.


Assuntos
Tigres , Animais , Arginina/análogos & derivados , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária
12.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944439

RESUMO

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species-Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked ß1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


Assuntos
Bacteroides/crescimento & desenvolvimento , Fucosiltransferases/química , Fucosiltransferases/genética , Polissacarídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Bacteroides fragilis/enzimologia , Bacteroides fragilis/crescimento & desenvolvimento , Configuração de Carboidratos , Evolução Molecular , Fucosiltransferases/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicosilação , Modelos Moleculares , Pedobacter/enzimologia , Pedobacter/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Tannerella forsythia/enzimologia , Tannerella forsythia/crescimento & desenvolvimento
13.
mBio ; 12(5): e0228521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517753

RESUMO

Bacteroidetocins are a family of antibacterial peptide toxins that are produced by and target members of the phylum Bacteroidetes. To date, 19 bacteroidetocins have been identified, and four have been tested and shown to kill diverse Bacteroidales species (M. J. Coyne, N. Béchon, L. M. Matano, V. L. McEneany, et al., Nat Commun 10:3460, 2019, https://doi.org/10.1038/s41467-019-11494-1). Here, we identify the target and likely mechanism of action of the bacteroidetocins. We selected seven spontaneous mutants of four different genera, all resistant to bacteroidetocin A (Bd-A) and found that all contained mutations in a single gene, bamA. Construction of three of these bamA mutants in the wild-type (WT) strains confirmed they confer resistance to Bd-A as well as to other bacteroidetocins. We identified an aspartate residue of BamA at the beginning of exterior loop 3 (eL3) that, when altered, renders strains resistant to Bd-A. Analysis of a panel of diverse Bacteroidales strains showed a correlation between the presence of this aspartate residue and Bd-A sensitivity. Fluorescence microscopy and transmission electron microscopy (TEM) analysis of Bd-A-treated cells showed cellular morphological changes consistent with a BamA defect. Transcriptomic analysis of Bd-A-treated cells revealed gene expression changes indicative of cell envelope stress. Studies in mice revealed that bacteroidetocin-resistant mutants are outcompeted by their WT strain in vivo. Analyses of longitudinal human gut isolates showed that bamA mutations leading to bacteroidetocin resistance do not become fixed in the human gut, even in bacteroidetocin-producing strains and nonproducing coresident strains. Together, these data lend further support to the applicability of the bacteroidetocins as therapeutic peptides in the treatment of maladies involving Bacteroidales species. IMPORTANCE The bacteroidetocins are a newly discovered class of bacteriocins specific to Bacteroidetes with a spectrum of targets extending from symbiotic gut Bacteroides, Parabacteroides, and Prevotella species to pathogenic oral and vaginal Prevotella species. We previously showed that one such bacteroidetocin, Bd-A, is active at nanomolar concentrations, is water soluble, and is bactericidal, all desirable features in a therapeutic antibacterial peptide. Here, we identify the target of several of the bacteroidetocins as the essential outer membrane protein BamA. Although mutations in bamA can be selected in bacteria grown in vitro, we show both in a mouse model and in human gut ecosystems that bamA mutants leading to Bd-A resistance are fitness attenuated and are not selected. These features further support the potential usefulness of the bacteroidetocins as therapeutics for maladies associated with pathogenic Prevotella species, such as recurrent bacterial vaginosis, for which there are few effective treatments.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Bacteriocinas/farmacologia , Bacteroidetes/efeitos dos fármacos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Bacteroidetes/química , Bacteroidetes/genética , Bacteroidetes/fisiologia , Farmacorresistência Bacteriana , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Camundongos , Alinhamento de Sequência , Simbiose
14.
PLoS Genet ; 17(4): e1009541, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901198

RESUMO

The human gut microbiota is a dense microbial ecosystem with extensive opportunities for bacterial contact-dependent processes such as conjugation and Type VI secretion system (T6SS)-dependent antagonism. In the gut Bacteroidales, two distinct genetic architectures of T6SS loci, GA1 and GA2, are contained on Integrative and Conjugative Elements (ICE). Despite intense interest in the T6SSs of the gut Bacteroidales, there is only a superficial understanding of their evolutionary patterns, and of their dissemination among Bacteroidales species in human gut communities. Here, we combine extensive genomic and metagenomic analyses to better understand their ecological and evolutionary dynamics. We identify new genetic subtypes, document extensive intrapersonal transfer of these ICE to Bacteroidales species within human gut microbiomes, and most importantly, reveal frequent population fixation of these newly armed strains in multiple species within a person. We further show the distribution of each of the distinct T6SSs in human populations and show there is geographical clustering. We reveal that the GA1 T6SS ICE integrates at a minimal recombination site leading to their integration throughout genomes and their frequent interruption of genes, whereas the GA2 T6SS ICE integrate at one of three different tRNA genes. The exclusion of concurrent GA1 and GA2 T6SSs in individual strains is associated with intact T6SS loci and with an ICE-encoded gene. By performing a comprehensive analysis of mobile genetic elements (MGE) in co-resident Bacteroidales species in numerous human gut communities, we identify 74 MGE that transferred to multiple Bacteroidales species within individual gut microbiomes. We further show that only three other MGE demonstrate multi-species spread in human gut microbiomes to the degree demonstrated by the GA1 and GA2 ICE. These data underscore the ubiquity and dissemination of mobile T6SS loci within Bacteroidales communities and across human populations.


Assuntos
Bacteroides/genética , Genoma Bacteriano/genética , Sequências Repetitivas Dispersas/genética , Sistemas de Secreção Tipo VI/genética , Bacteroides/classificação , Análise por Conglomerados , Ecossistema , Microbioma Gastrointestinal/genética , Genômica , Geografia , Humanos , Microbiota/genética , Sistemas de Secreção Tipo VI/classificação
15.
Nucleic Acids Res ; 48(19): 11040-11053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045731

RESUMO

The genomes of gut Bacteroidales contain numerous invertible regions, many of which contain promoters that dictate phase-variable synthesis of surface molecules such as polysaccharides, fimbriae, and outer surface proteins. Here, we characterize a different type of phase-variable system of Bacteroides fragilis, a Type I restriction modification system (R-M). We show that reversible DNA inversions within this R-M locus leads to the generation of eight specificity proteins with distinct recognition sites. In vitro grown bacteria have a different proportion of specificity gene combinations at the expression locus than bacteria isolated from the mammalian gut. By creating mutants, each able to produce only one specificity protein from this region, we identified the R-M recognition sites of four of these S-proteins using SMRT sequencing. Transcriptome analysis revealed that the locked specificity mutants, whether grown in vitro or isolated from the mammalian gut, have distinct transcriptional profiles, likely creating different phenotypes, one of which was confirmed. Genomic analyses of diverse strains of Bacteroidetes from both host-associated and environmental sources reveal the ubiquity of phase-variable R-M systems in this phylum.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides fragilis/enzimologia , Enzimas de Restrição-Modificação do DNA/metabolismo , Microbioma Gastrointestinal , Animais , Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , Humanos , Camundongos , Mutação , Transcriptoma
16.
Proc Natl Acad Sci U S A ; 117(39): 24484-24493, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32938803

RESUMO

Mechanistic studies of anaerobic gut bacteria have been hindered by the lack of a fluorescent protein system to track and visualize proteins and dynamic cellular processes in actively growing bacteria. Although underappreciated, many gut "anaerobes" are able to respire using oxygen as the terminal electron acceptor. The oxygen continually released from gut epithelial cells creates an oxygen gradient from the mucus layer to the anaerobic lumen [L. Albenberg et al., Gastroenterology 147, 1055-1063.e8 (2014)], with oxygen available to bacteria growing at the mucus layer. Here, we show that Bacteroides species are metabolically and energetically robust and do not mount stress responses in the presence of 0.10 to 0.14% oxygen, defined as nanaerobic conditions [A. D. Baughn, M. H. Malamy, Nature 427, 441-444 (2004)]. Taking advantage of this metabolic capability, we show that nanaerobic growth provides sufficient oxygen for the maturation of oxygen-requiring fluorescent proteins in Bacteroides species. Type strains of four different Bacteroides species show bright GFP fluorescence when grown nanaerobically versus anaerobically. We compared four different red fluorescent proteins and found that mKate2 yields the highest red fluorescence intensity in our assay. We show that GFP-tagged proteins can be localized in nanaerobically growing bacteria. In addition, we used time-lapse fluorescence microscopy to image dynamic type VI secretion system processes in metabolically active Bacteroides fragilis The ability to visualize fluorescently labeled Bacteroides and fluorescently linked proteins in actively growing nanaerobic gut symbionts ushers in an age of imaging analyses not previously possible in these bacteria.


Assuntos
Bacteroides/metabolismo , Microbioma Gastrointestinal , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides/classificação , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Humanos , Oxigênio/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo
17.
PLoS One ; 15(5): e0231445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384082

RESUMO

C-reactive protein (CRP) is a major acute phase protein used to monitor response to treatment during surgical recovery. Depending on the anatomical problem, surgery type and technique, the level of CRP can change drastically. The aim of this study was to describe the changes in CRP and white blood cell (WBC) levels following surgery for medial patellar luxation in otherwise healthy dogs. Twenty-two dogs completed the study. CRP was measured using a commercially available dry chemistry slide on a commercially available in-clinic analyser. Analyses were performed using the Wilcoxon Rank Sum test and a mixed effects Poisson regression model. A significant change in CRP levels was found between the pre-anesthetic and 24 hr post-surgical timepoint with a median difference of 92.0 mg/dL (P < 0.001). Though a median drop in the CRP value of 13.9 mg/dL was observed between the 24 hr and 48 hr post-surgical time period, the result was not statistically significant (P = 0.456). Similarly, there was a significant increase in WBC between the pre-anesthetic and 24-hr post-surgical time point (P < 0.001) followed by a significant decrease in WBC between the 24 hr and 48-hr post-surgical time points (P = 0.015). In this study population, CRP levels were observed to aid in monitoring of the overall health of the dogs following surgery for medial patellar luxation. The results of this study suggest that both CRP and WBC values significantly increase by 24 hr but where CRP levels remain elevated through 48 hr post-surgery, WBC showed a significant drop between 24 and 48 hr. Further investigation into the length of time for both CRP and WBC to reach basal levels in this particular type of surgery would be of value to monitor recovery from surgery.


Assuntos
Proteína C-Reativa/metabolismo , Procedimentos Ortopédicos/veterinária , Luxação Patelar/veterinária , Complicações Pós-Operatórias/diagnóstico , Animais , Cães , Feminino , Masculino , Procedimentos Ortopédicos/efeitos adversos , Luxação Patelar/cirurgia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo
18.
mBio ; 11(1)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019804

RESUMO

In bacteria, the respiratory pathways that drive molecular transport and ATP synthesis include a variety of enzyme complexes that utilize different electron donors and acceptors. This property allows them to vary the efficiency of energy conservation and to generate different types of electrochemical gradients (H+ or Na+). We know little about the respiratory pathways in Bacteroides species, which are abundant in the human gut, and whether they have a simple or a branched pathway. Here, we combined genetics, enzyme activity measurements, and mammalian gut colonization assays to better understand the first committed step in respiration, the transfer of electrons from NADH to quinone. We found that a model gut Bacteroides species, Bacteroides fragilis, has all three types of putative NADH dehydrogenases that typically transfer electrons from the highly reducing molecule NADH to quinone. Analyses of NADH oxidation and quinone reduction in wild-type and deletion mutants showed that two of these enzymes, Na+-pumping NADH:quinone oxidoreductase (NQR) and NADH dehydrogenase II (NDH2), have NADH dehydrogenase activity, whereas H+-pumping NADH:ubiquinone oxidoreductase (NUO) does not. Under anaerobic conditions, NQR contributes more than 65% of the NADH:quinone oxidoreductase activity. When grown in rich medium, none of the single deletion mutants had a significant growth defect; however, the double Δnqr Δndh2 mutant, which lacked almost all NADH:quinone oxidoreductase activity, had a significantly increased doubling time. Despite unaltered in vitro growth, the single nqr deletion mutant was unable to competitively colonize the gnotobiotic mouse gut, confirming the importance of NQR to respiration in B. fragilis and the overall importance of respiration to this abundant gut symbiont.IMPORTANCEBacteroides species are abundant in the human intestine and provide numerous beneficial properties to their hosts. The ability of Bacteroides species to convert host and dietary glycans and polysaccharides to energy is paramount to their success in the human gut. We know a great deal about the molecules that these bacteria extract from the human gut but much less about how they convert those molecules into energy. Here, we show that B. fragilis has a complex respiratory pathway with two different enzymes that transfer electrons from NADH to quinone and a third enzyme complex that may use an electron donor other than NADH. Although fermentation has generally been believed to be the main mechanism of energy generation in Bacteroides, we found that a mutant lacking one of the NADH:quinone oxidoreductases was unable to compete with the wild type in the mammalian gut, revealing the importance of respiration to these abundant gut symbionts.


Assuntos
Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Anaerobiose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Feminino , Vida Livre de Germes , Masculino , Redes e Vias Metabólicas , Camundongos , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Oxirredução , Quinona Redutases/genética , Quinona Redutases/metabolismo , Deleção de Sequência
19.
PLoS One ; 15(1): e0227964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990929

RESUMO

Hyperthyroidism in cats can mask changes in renal function, including chronic kidney disease (CKD), because of hyperfiltration and muscle loss. Symmetric dimethylarginine (SDMA) has been shown to increase earlier than creatinine in cats with renal dysfunction, and, unlike creatinine, SDMA is not impacted by lean muscle mass. The aim of this study was to describe the relationship between SDMA, creatinine, body weight and TT4 over time during treatment of hyperthyroidism. Cats were retrospectively identified from the US IDEXX Reference Laboratories database where TT4, SDMA and creatinine were measured on the same cat at multiple time points. A hyperthyroid treated group was identified (TT4 ≤ 4.7 µg/dL and decreased by a minimum of 2.5 µg/dL) that had body weight and laboratory results available from more than one visit, and was used to evaluate body weight, creatinine, SDMA and TT4 pre-treatment and at 1-30, 31-60, 61-90, 91-120 days post-treatment. Creatinine significantly decreased with increasing concentrations of TT4 (Spearman's ρ = -0.37, P < 0.001), whereas SDMA did not. Body weight, SDMA and creatinine concentrations significantly increased during the immediate 1-30 day post-treatment period (P < 0.012, P < 0.001, P < 0.001, respectively). During treatment creatinine continued to increase as cats gained weight. In contrast, SDMA remained stable during treatment and was comparable to age-matched control cats. Therefore, SDMA may be a more reliable biomarker of renal function than creatinine in hyperthyroid cats before and during treatment.


Assuntos
Arginina/análogos & derivados , Creatinina/sangue , Hipertireoidismo/sangue , Insuficiência Renal Crônica/sangue , Animais , Arginina/sangue , Biomarcadores/sangue , Peso Corporal/fisiologia , Gatos , Testes Diagnósticos de Rotina , Feminino , Taxa de Filtração Glomerular/fisiologia , Hipertireoidismo/patologia , Hipertireoidismo/veterinária , Rim/metabolismo , Rim/patologia , Masculino , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/veterinária , Estudos Retrospectivos
20.
Nat Commun ; 10(1): 3460, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371723

RESUMO

Bacteria often produce antimicrobial toxins to compete in microbial communities. Here we identify a family of broad-spectrum peptide toxins, named bacteroidetocins, produced by Bacteroidetes species. We study this toxin family using phenotypic, mutational, bioinformatic, and human metagenomic analyses. Bacteroidetocins are related to class IIa bacteriocins of Gram-positive bacteria and kill members of the Bacteroidetes phylum, including Bacteroides, Parabacteroides, and Prevotella gut species, as well as pathogenic Prevotella species. The bacteroidetocin biosynthesis genes are found in horizontally acquired mobile elements, which likely allow dissemination within the gut microbiota and may explain their wide distribution in human populations. Bacteroidetocins may have potential applications in microbiome engineering and as therapeutics for polymicrobial diseases such as bacterial vaginosis and periodontal disease.


Assuntos
Antibacterianos/biossíntese , Toxinas Bacterianas/biossíntese , Bacteriocinas/biossíntese , Bacteriocinas/genética , Bacteroidetes/metabolismo , Microbioma Gastrointestinal/fisiologia , Peptídeos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Bacteriocinas/farmacologia , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Sequência de Bases , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Transferência Genética Horizontal/genética , Humanos , Sequências Repetitivas Dispersas , Metagenômica , Testes de Sensibilidade Microbiana , Peptídeos/genética , Peptídeos/farmacologia , Prevotella/efeitos dos fármacos , Análise de Sequência de Proteína , Vaginose Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...