Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 15(5): 485-93, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391964

RESUMO

In prokaryotes, the transfer of DNA between cellular compartments is essential for the segregation and exchange of genetic material. SpoIIIE and FtsK are AAA+ ATPases responsible for intercompartmental chromosome translocation in bacteria. Despite functional and sequence similarities, these motors were proposed to use drastically different mechanisms: SpoIIIE was suggested to be a unidirectional DNA transporter that exports DNA from the compartment in which it assembles, whereas FtsK was shown to establish translocation directionality by interacting with highly skewed chromosomal sequences. Here we use a combination of single-molecule, bioinformatics and in vivo fluorescence methodologies to study the properties of DNA translocation by SpoIIIE in vitro and in vivo. These data allow us to propose a sequence-directed DNA exporter model that reconciles previously proposed models for SpoIIIE and FtsK, constituting a unified model for directional DNA transport by the SpoIIIE/FtsK family of AAA+ ring ATPases.


Assuntos
Bacillus subtilis/fisiologia , Cromossomos Bacterianos/metabolismo , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/citologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , DNA Bacteriano/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Esporos Bacterianos/metabolismo
2.
Nat Struct Mol Biol ; 14(4): 264-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17334374

RESUMO

E. coli DNA gyrase uses the energy of ATP hydrolysis to introduce essential negative supercoils into the genome, thereby working against the mechanical stresses that accumulate in supercoiled DNA. Using a magnetic-tweezers assay, we demonstrate that small changes in force and torque can switch gyrase among three distinct modes of activity. Under low mechanical stress, gyrase introduces negative supercoils by a mechanism that depends on DNA wrapping. Elevated tension or positive torque suppresses DNA wrapping, revealing a second mode of activity that resembles the activity of topoisomerase IV. This 'distal T-segment capture' mode results in active relaxation of left-handed braids and positive supercoils. A third mode is responsible for the ATP-independent relaxation of negative supercoils. We present a branched kinetic model that quantitatively accounts for all of our single-molecule results and agrees with existing biochemical data.


Assuntos
DNA Girase/metabolismo , Escherichia coli/enzimologia , Torque , Trifosfato de Adenosina/farmacologia , DNA Bacteriano/química , DNA Super-Helicoidal/química , Magnetismo , Modelos Biológicos , Conformação de Ácido Nucleico/efeitos dos fármacos , Subunidades Proteicas/metabolismo
3.
Biotechniques ; 42(1): 84, 86-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17269489

RESUMO

DNA ligation is a routine laboratory practice, yet the yield of the desired product is often very low due to competing off-pathway reactions. The sensitivity of subsequent manipulations (e.g., selection via bacterial transformation) often obviates the need for a high yield of correctly ligated products. However the ability to perform high-yield, preparative-scale DNA ligations would benefit a number of downstream applications ranging from standard molecular cloning to biophysics and DNA computing. We describe here a ligation technique that specifically converts off-pathway ligation products back into substrate. We term this second-chance strategy enzymatic ligation assisted by nucleases (ELAN) and demonstrate the ordered assembly of four DNA fragments via simultaneous ligation and digestion in the presence of eight restriction enzymes. Use of ELAN increased the yield of the desired product by more than 30-fold.


Assuntos
DNA/síntese química , Desoxirribonucleases , Técnicas Genéticas , Enzimas de Restrição do DNA
4.
Nat Struct Mol Biol ; 13(11): 1023-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17041598

RESUMO

FtsK is a prokaryotic multidomain DNA translocase that coordinates chromosome segregation and cell division. FtsK is membrane anchored at the division septum and, guided by highly skewed DNA sequences, translocates the chromosome to bring the terminus of replication to the septum. Here, we use in vitro single-molecule and ensemble methods to unveil a mechanism of action in which the translocation and sequence-recognition activities are performed by different domains in FtsK.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Sequência de Bases , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína
5.
Nat Rev Mol Cell Biol ; 7(8): 580-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16936698

RESUMO

As genetic material DNA is wonderful, but as a macromolecule it is unruly, voluminous and fragile. Without the action of DNA replicases, topoisomerases, helicases, translocases and recombinases, the genome would collapse into a topologically entangled random coil that would be useless to the cell. We discuss the organization, movement and energetics of these proteins that are crucial to the preservation of a molecule that has such beautiful biological but challenging physical properties.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/química , Modelos Genéticos , Peso Molecular , Conformação de Ácido Nucleico
6.
Nature ; 442(7104): 836-9, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16862122

RESUMO

DNA is often modelled as an isotropic rod, but its chiral structure suggests the possible importance of anisotropic mechanical properties, including coupling between twisting and stretching degrees of freedom. Simple physical intuition predicts that DNA should unwind under tension, as it is pulled towards a denatured structure. We used rotor bead tracking to directly measure twist-stretch coupling in single DNA molecules. Here we show that for small distortions, contrary to intuition, DNA overwinds under tension, reaching a maximum twist at a tension of approximately 30 pN. As tension is increased above this critical value, the DNA begins to unwind. The observed twist-stretch coupling predicts that DNA should also lengthen when overwound under constant tension, an effect that we quantitatively confirm. We present a simple model that explains these unusual mechanical properties, and also suggests a possible origin for the anomalously large torsional rigidity of DNA. Our results have implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for variability in the lengths of their binding sites. The requisite coupled DNA distortions are favoured by the intrinsic mechanical properties of the double helix reported here.


Assuntos
DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Fenômenos Biomecânicos , Microscopia de Fluorescência , Modelos Moleculares
7.
J Biol Chem ; 281(35): 25407-15, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16798730

RESUMO

Type II topoisomerases change DNA topology by passage of one DNA duplex (the transfer, T-segment) through a transient double-stranded break in another (the gate, G-segment). Here we monitor the passage between short double-stranded DNA segments within long single-stranded DNA circles that leads to catenation of the circles. To facilitate catenation, the circles were brought into close proximity using a tethering oligonucleotide, which was removed after the reaction was complete. We varied the length and the composition of the reacting DNA segments. The minimal DNA duplex length at which we detected catenation was 50-60 bp for DNA gyrase and 40 bp for topoisomerase IV (Topo IV). For Topo IV, catenation was observed when one, but not both, of the DNA-DNA duplexes was replaced by a DNA-RNA duplex. Topo IV cleaved the DNA-DNA duplex, but not the DNA-RNA duplex implying that the DNA-RNA duplex can be a T-segment but not a G-segment.


Assuntos
DNA Girase/química , DNA Topoisomerases Tipo I/fisiologia , DNA/química , Trifosfato de Adenosina/química , DNA de Cadeia Simples/química , Escherichia coli/enzimologia , Modelos Biológicos , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , RNA/química
8.
J Biol Chem ; 281(28): 18927-32, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16684778

RESUMO

Escherichia coli topoisomerase IV (topo IV) is an essential enzyme that unlinks the daughter chromosomes for proper segregation at cell division. In vitro, topo IV readily distinguishes between the two possible chiralities of crossing segments in a DNA substrate. The enzyme relaxes positive supercoils and left-handed braids 20 times faster, and with greater processivity, than negative supercoils and right-handed braids. Here, we used chemical cross-linking of topo IV to demonstrate that enzyme bound to positively supercoiled DNA is in a different conformation from that bound to other forms of DNA. Using three different reagents, we observed novel cross-linked species of topo IV when positively supercoiled DNA was in the reaction. We show that the ParE subunits are in close enough proximity to be cross-linked only when the enzyme is bound to positively supercoiled DNA. We suggest that the altered conformation reflects efficient binding by topo IV of the two DNA segments that participate in the strand passage reaction.


Assuntos
DNA Topoisomerase IV/química , DNA Super-Helicoidal/química , Escherichia coli/enzimologia , Trifosfato de Adenosina/química , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , DNA Topoisomerase IV/genética , Modelos Genéticos , Conformação Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
10.
Genetics ; 172(4): 2185-200, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16452135

RESUMO

Heterodimers of structural maintenance of chromosomes (SMC) proteins form the core of several protein complexes involved in the organization of DNA, including condensation and cohesion of the chromosomes at metaphase. The functions of the complexes with a heterodimer of Smc5p and Smc6p are less clear. To better understand them, we created two S. cerevisiae strains bearing temperature-sensitive alleles of SMC5. When shifted to the restrictive temperature, both mutants lose viability gradually, concomitant with the appearance of nuclear abnormalities and phosphorylation of the Rad53p DNA damage checkpoint protein. Removal of Rad52p or overexpression of the SUMO ligase Mms21p partially suppresses the temperature sensitivity of smc5 strains and increases their survival at the restrictive temperature. At the permissive temperature, smc5-31 but not smc5-33 cells exhibit hypersensitivity to several DNA-damaging agents despite induction of the DNA damage checkpoint. Similarly, smc5-31 but not smc5-33 cells are killed by overexpression of the SUMO ligase-defective Mms21-SAp but not by overexpression of wild-type Mms21p. Both smc5 alleles are synthetically lethal with mms21-SA and exhibit Rad52p-independent chromosome fragmentation and loss at semipermissive temperatures. Our data indicate a critical role for the S. cerevisiae Smc5/6-containing complexes in both DNA repair and chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Reparo do DNA , Dimerização , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nature ; 439(7072): 100-104, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16397501

RESUMO

DNA gyrase is a molecular machine that uses the energy of ATP hydrolysis to introduce essential negative supercoils into DNA. The directionality of supercoiling is ensured by chiral wrapping of the DNA around a specialized domain of the enzyme before strand passage. Here we observe the activity of gyrase in real time by tracking the rotation of a submicrometre bead attached to the side of a stretched DNA molecule. In the presence of gyrase and ATP, we observe bursts of rotation corresponding to the processive, stepwise introduction of negative supercoils in strict multiples of two. Changes in DNA tension have no detectable effect on supercoiling velocity, but the enzyme becomes markedly less processive as tension is increased over a range of only a few tenths of piconewtons. This behaviour is quantitatively explained by a simple mechanochemical model in which processivity depends on a kinetic competition between dissociation and rapid, tension-sensitive DNA wrapping. In a high-resolution variant of our assay, we directly detect rotational pauses corresponding to two kinetic substeps: an ATP-independent step at the end of the reaction cycle, and an ATP-binding step in the middle of the cycle, subsequent to DNA wrapping.


Assuntos
DNA Girase/metabolismo , DNA Super-Helicoidal/metabolismo , Microesferas , Rotação , Trifosfato de Adenosina/metabolismo , DNA Super-Helicoidal/química , Escherichia coli/enzimologia , Cinética , Modelos Biológicos , Conformação de Ácido Nucleico
12.
Proc Natl Acad Sci U S A ; 102(49): 17618-23, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16301526

RESUMO

FtsK from Escherichia coli is a fast and sequence-directed DNA translocase with roles in chromosome dimer resolution, segregation, and decatenation. From the movement of single FtsK particles on defined DNA substrates and an analysis of skewed DNA sequences in bacteria, we identify GNGNAGGG, its complement, or both as a sequence motif that controls translocation directionality. GNGNAGGG is skewed so that it is predominantly on the leading strand of chromosomal replication. Translocation across this octamer from the 3' side of the G-rich strand causes FtsK to pause, turn around, and translocate in the opposite direction. Only 39 +/- 4% of the encounters between FtsK and the octamer result in a turnaround, congruent with our optimum turnaround probability prediction of 30%. The probability that the observed skew of GNGNAGGG within 1 megabase of dif occurred by chance in E. coli is 1.7 x 10(-57), and similarly dramatic skews are found in the five other bacterial genomes we examined. The fact that FtsK acts only in the terminus region and the octamer skew extends from origin to terminus implies that this skew is also important in other basic cellular processes that are common among bacteria. Finally, we show that the FtsK translocase is a powerful motor that is able to displace a triplex-forming oligo from a DNA substrate.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Oligonucleotídeos/metabolismo , Sequência de Bases , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Biologia Computacional , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Oligonucleotídeos/genética
13.
Mol Microbiol ; 57(6): 1636-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16135230

RESUMO

Chromosomes are divided into topologically independent regions, called domains, by the action of uncharacterized barriers. With the goal of identifying domain barrier components, we designed a genetic selection for mutants with reduced negative supercoiling of the Escherichia coli chromosome. We employed a strain that contained two chromosomally located reporter genes under the control of a supercoiling-sensitive promoter and used transposon mutagenesis to generate a wide range of mutants. We subjected the selected mutants to a series of secondary screens and identified five proteins as modulators of chromosomal supercoiling in vivo. Three of these proteins: H-NS, Fis and DksA, have clear ties to chromosome biology. The other two proteins, phosphoglucomutase (Pgm) and transketolase (TktA), are enzymes involved in carbohydrate metabolism and have not previously been shown to affect DNA. Deletion of any of the identified genes specifically affected chromosome topology, without affecting plasmid supercoiling. We suggest that at least H-NS, Fis and perhaps TktA assist directly in the supercoiling of domains by forming topological barriers on the E. coli chromosome.


Assuntos
Cromossomos Bacterianos/genética , DNA Super-Helicoidal/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutação , Seleção Genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
J Biol Chem ; 280(41): 34723-34, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16100111

RESUMO

Smc2/4 forms the core of the Saccharomyces cerevisiae condensin, which promotes metaphase chromosome compaction. To understand how condensin manipulates DNA, we used two in vitro assays to study the role of SMC (structural maintenance of chromosome) proteins and ATP in reconfiguring the path of DNA. The first assay evaluated the topology of knots formed in the presence of topoisomerase II. Unexpectedly, both wild-type Smc2/4 and an ATPase mutant promoted (+) chiral knotting of nicked plasmids, revealing that ATP hydrolysis and the non-SMC condensins are not required to compact DNA chirally. The second assay measured Smc2/4-dependent changes in linking number (Lk). Smc2/4 did not induce (+) supercoiling, but instead induced broadening of topoisomer distributions in a cooperative manner without altering Lk(0). To explain chiral knotting in substrates devoid of chiral supercoiling, we propose that Smc2/4 directs chiral DNA compaction by constraining the duplex to retrace its own path. In this highly cooperative process, both (+) and (-) loops are sequestered (about one per kb), leaving net writhe and twist unchanged while broadening Lk. We have developed a quantitative theory to account for these results. Additionally, we have shown at higher molar stoichiometries that Smc2/4 prevents relaxation by topoisomerase I and nick closure by DNA ligase, indicating that Smc2/4 can saturate DNA. By electron microscopy of Smc2/4-DNA complexes, we observed primarily two protein-laden bound species: long flexible filaments and uniform rings or "doughnuts." Close packing of Smc2/4 on DNA explains the substrate protection we observed. Our results support the hypothesis that SMC proteins bind multiple DNA duplexes.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , DNA/química , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Transporte/química , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/química , Cromossomos/ultraestrutura , DNA Ligases/química , DNA Topoisomerases Tipo II/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/química , Hidrólise , Complexos Multiproteicos/química , Mutação , Proteínas Nucleares/química , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Temperatura , Fatores de Tempo , Triticum/metabolismo
15.
EMBO Rep ; 6(8): 736-41, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16041320

RESUMO

Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Alelos , Fenômenos Fisiológicos Bacterianos , Ciclo Celular , Proliferação de Células , DNA/química , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genótipo , Immunoblotting , Luz , Modelos Genéticos , Complexos Multiproteicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Origem de Replicação , Espalhamento de Radiação
17.
Proc Natl Acad Sci U S A ; 102(11): 3942-7, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15738384

RESUMO

In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.


Assuntos
Cromossomos/fisiologia , Replicação do DNA/fisiologia , DNA/biossíntese , Escherichia coli/genética , Escherichia coli/fisiologia , Genoma Bacteriano , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos
18.
Science ; 307(5714): 1409, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15746408
20.
Science ; 307(5709): 586-90, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15681387

RESUMO

DNA translocases are molecular motors that move rapidly along DNA using adenosine triphosphate as the source of energy. We directly observed the movement of purified FtsK, an Escherichia coli translocase, on single DNA molecules. The protein moves at 5 kilobases per second and against forces up to 60 piconewtons, and locally reverses direction without dissociation. On three natural substrates, independent of its initial binding position, FtsK efficiently translocates over long distances to the terminal region of the E. coli chromosome, as it does in vivo. Our results imply that FtsK is a bidirectional motor that changes direction in response to short, asymmetric directing DNA sequences.


Assuntos
DNA Bacteriano/metabolismo , DNA Viral/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Motores Moleculares/metabolismo , Algoritmos , Bacteriófago lambda , Sequência de Bases , Cromossomos Bacterianos , DNA Bacteriano/química , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , DNA Viral/química , Proteínas de Escherichia coli/isolamento & purificação , Cinética , Proteínas de Membrana/isolamento & purificação , Modelos Biológicos , Proteínas Motores Moleculares/isolamento & purificação , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...