Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1221071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503338

RESUMO

Disease monitoring in free-ranging wildlife is a challenge and often relies on passive surveillance. Alternatively, proactive surveillance that relies on the detection of specific antibodies could give more reliable and timely insight into disease presence and prevalence in a population, especially if the evidence of disease occurs below detection thresholds for passive surveillance. Primary binding assays, like the indirect ELISA for antibody detection in wildlife, are hampered by a lack of species-specific conjugates. In this study, we developed anti-kudu (Tragelaphus strepsiceros) and anti-impala (Aepyceros melampus) immunoglobulin-specific conjugates in chickens and compared them to the binding of commercially available protein-G and protein-AG conjugates, using an ELISA-based avidity index. The conjugates were evaluated for cross-reaction with sera from other wild herbivores to assess future use in ELISAs. The developed conjugates had a high avidity of >70% against kudu and impala sera. The commercial conjugates (protein-G and protein-AG) had significantly low relative avidity (<20%) against these species. Eighteen other wildlife species demonstrated cross-reactivity with a mean relative avidity of >50% with the impala and kudu conjugates and <40% with the commercial conjugates. These results demonstrate that species-specific conjugates are important tools for the development and validation of immunoassays in wildlife and for the surveillance of zoonotic agents along the livestock-wildlife-human interface.


Assuntos
Animais Selvagens , Antílopes , Animais , Humanos , Galinhas , Anticorpos , Ensaio de Imunoadsorção Enzimática/métodos
2.
BMC Vet Res ; 18(1): 363, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183113

RESUMO

BACKGROUND: It has been proposed that childhood vaccines in high-mortality populations may have substantial impacts on mortality rates that are not explained by the prevention of targeted diseases, nor conversely by typical expected adverse reactions to the vaccines, and that these non-specific effects (NSEs) are generally more pronounced in females. The existence of these effects, and any implications for the development of vaccines and the design of vaccination programs to enhance safety, remain controversial. One area of controversy is the reported association of non-live vaccines with increased female mortality. In a previous randomized controlled trial (RCT), we observed that non-live alum-adjuvanted animal rabies vaccine (ARV) was associated with increased female but not male mortality in young, free-roaming dogs. Conversely, non-live non-adjuvanted human rabies vaccine (NRV) has been associated with beneficial non-specific effects in children. Alum adjuvant has been shown to suppress Th1 responses to pathogens, leading us to hypothesize that alum-adjuvanted rabies vaccine in young dogs has a detrimental effect on female survival by modulating the immune response to infectious and/or parasitic diseases. In this paper, we present the protocol of a 3-arm RCT comparing the effect of alum-adjuvanted rabies vaccine, non-adjuvanted rabies vaccine and placebo on all-cause mortality in an owned, free-roaming dog population, with causal mediation analysis of the RCT and a nested case-control study to test this hypothesis. METHODS: Randomised controlled trial with a nested case-control study. DISCUSSION: We expect that, among the placebo group, males will have higher mortality caused by higher pathogen loads and more severe disease, as determined by haematological parameters and inflammatory biomarkers. Among females, we expect that there will be no difference in mortality between the NRV and placebo groups, but that the ARV group will have higher mortality, again mediated by higher pathogen loads and more severe disease. We anticipate that these changes are preceded by shifts in key serum cytokine concentrations towards an anti-inflammatory immune response in females. If confirmed, these results will provide a rational basis for mitigation of detrimental NSEs of non-live vaccines in high-mortality populations.


Assuntos
Doenças do Cão , Vacina Antirrábica , Raiva , Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen , Animais , Anti-Inflamatórios , Biomarcadores , Estudos de Casos e Controles , Ensaios Clínicos Veterinários como Assunto , Citocinas , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Cães , Feminino , Humanos , Masculino , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Vacinação/veterinária
3.
Viruses ; 14(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893686

RESUMO

We investigated the possibility that sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks had extended beyond the historically affected northern part of South Africa that was declared a controlled area in 1935 to prevent the spread of infection to the rest of the country. We recently reported finding antibody to the virus in extralimital warthogs in the south of the country, and now describe the detection of infected ticks outside the controlled area. A total of 5078 ticks was collected at 45 locations in 7/9 provinces during 2019-2021 and assayed as 711 pools for virus content by qPCR, while 221 pools were also analysed for tick phylogenetics. Viral nucleic acid was detected in 50 tick pools representing all four members of the Ornithodoros (Ornithodoros) moubata complex known to occur in South Africa: O. (O.) waterbergensis and O. (O.) phacochoerus species yielded ASFV genotypes XX, XXI, XXII at 4 locations and O. (O.) moubata yielded ASFV genotype I at two locations inside the controlled area. Outside the controlled area, O. (O.) moubata and O. (O.) compactus ticks yielded ASFV genotype I at 7 locations, while genotype III ASFV was identified in O. (O.) compactus ticks at a single location. Two of the three species of the O. (O.) savignyi complex ticks known to be present in the country, O. (O.) kalahariensis and O. (O.) noorsveldensis, were collected at single locations and found negative for virus. The only member of the Pavlovskyella subgenus of Ornithodoros ticks known to occur in South Africa, O. (P.) zumpti, was collected from warthog burrows for the first time, in Addo National Park in the Eastern Cape Province where ASFV had never been recorded, and it tested negative for the viral nucleic acid. While it is confirmed that there is sylvatic circulation of ASFV outside the controlled area in South Africa, there is a need for more extensive surveillance and for vector competence studies with various species of Ornithodoros ticks.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ácidos Nucleicos , Ornithodoros , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , África do Sul/epidemiologia , Suínos
4.
Front Immunol ; 13: 814031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237267

RESUMO

Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis, is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu (Tragelaphus strepsiceros) in KNP and plains zebra (Equus quagga) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response.


Assuntos
Antílopes , Antraz , Bacillus anthracis , Animais , Equidae , Herbivoria , Imunidade , Parques Recreativos
5.
Front Vet Sci ; 8: 746129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901242

RESUMO

Sylvatic circulation of African swine fever virus (ASFV) in warthogs and Ornithodoros ticks that live in warthog burrows historically occurred in northern South Africa. Outbreaks of the disease in domestic pigs originated in this region. A controlled area was declared in the north in 1935 and regulations were implemented to prevent transfer of potentially infected suids or products to the rest of the country. However, over the past six decades, warthogs have been widely translocated to the south where the extralimital animals have flourished to become an invasive species. Since 2016, there have been outbreaks of ASF in pigs outside the controlled area that cannot be linked to transfer of infected animals or products from the north. An investigation in 2008-2012 revealed that the presence of Ornithodoros ticks and ASFV in warthog burrows extended marginally across the boundary of the controlled area. We found serological evidence of ASFV circulation in extralimital warthogs further south in the central part of the country.

6.
Onderstepoort J Vet Res ; 88(1): e1-e4, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34918522

RESUMO

African swine fever virus (ASFV) causes a lethal and contagious disease of domestic pigs. In South Africa, the virus historically circulated in warthogs and ornithodorid ticks that were only found in warthog burrows in the north of the country. Regulations implemented in 1935 to prevent transfer of infected animals or products to the south initially proved effective but from 2016 there have been outbreaks of disease in the south that cannot be traced to transfer of infection from the north. From 1963 there were widespread translocations of warthogs to the south, initially from a source considered to be free of ornithodorid ticks. We undertook to determine whether sylvatic circulation of ASFV occurs in the south, including identification of potential new vectors, through testing extralimital warthogs for antibody and ticks for virus. Results of testing warthogs for antibody and other species of ticks for virus will be presented separately. Here we report finding Ornithodoros (Pavlovskyella) zumpti ticks in warthog burrows for the first time. This occurred in the Eastern Cape Province (ECP) in 2019. Since African swine fever was recognised in the ECP for the first time in 2020 and outbreaks of the disease in domestic pigs continue to occur there, priority should be given to determining the distribution range and vector potential of O. (P.) zumpti for ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Ornithodoros , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Animais , África do Sul/epidemiologia , Sus scrofa , Suínos
7.
Vaccine ; 38(44): 6889-6898, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32900540

RESUMO

Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.


Assuntos
Doenças dos Bovinos , Rhipicephalus , Infestações por Carrapato , Animais , Bovinos , Perfilação da Expressão Gênica , Linfonodos , Rhipicephalus/genética , Infestações por Carrapato/veterinária , Transcriptoma
8.
Trop Med Infect Dis ; 5(1)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178448

RESUMO

To achieve global elimination of human rabies from dogs by 2030, evidence-based strategies for effective dog vaccination are needed. Current guidelines recommend inclusion of dogs younger than 3 months in mass rabies vaccination campaigns, although available vaccines are only recommended for use by manufacturers in older dogs, ostensibly due to concerns over interference of maternally-acquired immunity with immune response to the vaccine. Adverse effects of vaccination in this age group of dogs have also not been adequately assessed under field conditions. In a single-site, owner-blinded, randomized, placebo-controlled trial in puppies born to mothers vaccinated within the previous 18 months in a high-mortality population of owned, free-roaming dogs in South Africa, we assessed immunogenicity and effect on survival to all causes of mortality of a single dose of rabies vaccine administered at 6 weeks of age. We found that puppies did not have appreciable levels of maternally-derived antibodies at 6 weeks of age (geometric mean titer 0.065 IU/mL, 95% CI 0.061-0.069; n = 346), and that 88% (95% CI 80.7-93.3) of puppies vaccinated at 6 weeks had titers ≥0.5 IU/mL 21 days later (n = 117). Although the average effect of vaccination on survival was not statistically significant (hazard ratio [HR] 1.35, 95% CI 0.83-2.18), this effect was modified by sex (p = 0.02), with the HR in females 3.09 (95% CI 1.24-7.69) and the HR in males 0.79 (95% CI 0.41-1.53). We speculate that this effect is related to the observed survival advantage that females had over males in the unvaccinated group (HR 0.27; 95% CI 0.11-0.70), with vaccination eroding this advantage through as-yet-unknown mechanisms.

9.
Onderstepoort J Vet Res ; 77(1): E1-5, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23327157

RESUMO

A total of 1 076 sera from breeding goats were randomly collected from 24 different farms and tested with CHEKIT®-ELISA (IDEXX Laboratories B.V., 1 119 NE Schiphol-Rijk, Nederland) for antibodies against Chlamydophila abortus. The farms were divided into two categories of twelve farms each,based on their previous history of observed abortions over the previous 12 months: those with low (< 5%) levels of abortion and those with high (≥ 5%) levels of abortion. The farmers were also interviewed on their level of awareness about chlamydophilosis, its zoonotic importance and vaccination measures against the disease. The study detected overall seroprevalence levels of 25% for the farms and 8% for the individual animals (at 95% confidence). A total of six out of twentyfour farms (25%) had at least one positive breeding animal. Only five out of the twenty-four (20.8%)farmers interviewed were aware of chlamydophilosis and its zoonotic dangers. None of the 24 farmers interviewed practised any vaccination against chlamydophilosis. There was a significantly higher number of seropositive animals from farms with high levels of abortion, compared to those animals from farms with low levels of abortion (p = 0.0001). This study underscores the need for a higher level of farmer awareness and training on chlamydophilosis and its zoonotic dangers.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções por Chlamydophila/veterinária , Doenças das Cabras/epidemiologia , Animais , Conscientização , Cruzamento , Chlamydophila/imunologia , Infecções por Chlamydophila/epidemiologia , Infecções por Chlamydophila/prevenção & controle , Infecções por Chlamydophila/transmissão , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/prevenção & controle , Doenças das Cabras/transmissão , Cabras , Humanos , Masculino , Namíbia/epidemiologia , Gravidez , Estudos Soroepidemiológicos , Vacinação/veterinária , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...