Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt A): 116705, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379079

RESUMO

Filamentous algae nutrient scrubber (FANS) operating parameters can strongly influence algal biomass productivity and nutrient removal. However, few studies to date have investigated the effects of FANS operating parameters such as initial standing crop, harvesting frequency and influent flow rate on biomass productivity and nutrient removal performance, especially for FANS that cultivate a single species of algae. Therefore, the overall aim of this study was to investigate how operating parameters affect the biomass productivity and nutrient removal performance of Oedogonium sp. - a promising species for unialgal FANS. The initial standing crop had a significant effect on biomass productivity, with productivities being highest (8.6 ± 0.5 g DW biomass m-2day-1) when the initial standing crop was 60-70 g DW m-2. However, the daily nutrient removal rate was highest (0.47 ± 0.06 g N m-2 day-1and 1.24 ± 0.13 g P m-2 day-1) at the highest initial standing crop (100-110 DW m-2). Biomass productivity was highest with a three-day growth period, regardless of size of the initial standing crop. Therefore, a four-day harvesting interval was selected as the optimal harvesting regime to promote exponential growth and high biomass production. Influent flow rate had a significant effect on biomass productivity, which was highest (9.3 ± 1.7 g DW m-2 day-1) for the 1 L min-1 flow rate. This flow rate also gave the highest instantaneous nutrient removal rate (0.05 ± 0.02 g N m-3 and 0.14 ± 0.05 g P m-3). Current results suggest that an optimum initial standing crop of 70-80 g DW m-2, harvesting frequency of four days and influent flow rate of 1 L min-1 (16.7 L min-1 m-1 width) were optimal for Oedogonium sp. cultivated on FANS to maximize their biomass production and nutrient removal under controlled laboratory conditions. These results contribute to understanding the impacts of operating parameters on optimizing unialgal Oedogonium sp. FANS biomass production and nutrient removal performance.


Assuntos
Microalgas , Nitrogênio , Biomassa , Nutrientes
2.
J Environ Manage ; 312: 114882, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344877

RESUMO

We investigated the effect of algal contact time (ACT) and horizontal water velocity (HWV) on the performance of pilot-scale Filamentous Algae Nutrient Scrubbers (FANS) treating river water during the NZ summer. The FANS floways were seeded with a mixture of four New Zealand native filamentous algal species (Oedogonium sp., Cladophora sp., Rhizoclonium sp., and Spirogyra sp.) and allowed to establish over one month. River water was pumped onto the top of each FANS at different flow rates (2, 4 or 8 L min-1) to give ACTs from 0.6 to 10.1 min depending on FANS length (6-24 m) and HWV from 0.04 to 0.16 m s-1. FANS inflow and final outflows were monitored three times a week for nitrate and DRP concentrations and FANS algal biomass was harvested weekly. Average biomass productivity was significantly higher on the FANS with shorter ACT. For example, biomass productivity of the 24 m length FANS with 2.5 min ACT were 67% higher (11.2 g DW m-2 d-1) than that with four times the ACT (10.1 min). Irrespective of the HWV the biomass productivity declined down the length of the floways (with longer ACT) and the decline was greater at lower HWV. The decreased biomass productivity at lower HWV (and/or higher ACT) was likely attributable to the daytime carbon limitation of photosynthesis (at pH > 9.5) and heat stress with elevated daytime water temperature (at >30 °C). Despite the short ACT (<10.1 min) the single pass pilot-scale FANS effectively removed both nitrate-N and DRP from the river water, with >35% removal of both NO3-N (from 0.49 to <0.32 mg N L-1) and DRP (from 0.14 to <0.09 mg P L-1). Both the nitrogen and phosphorus content of the harvested algal biomass were unaffected by both HWV and ACT and typical (N: ∼2.0%; P: 0.2-0.3%) of the literature values (N: 1.5-3.0%; P: 0.15-0.32%). Compared with constructed wetland nutrient removal (0.1 g N m-2 d-1; 0.08 g P m-2 d-1), the FANS achieved up to 2.5-fold higher nitrogen removal (0.24 N m-2 d-1) through algal nitrogen assimilation followed by subsequent algal harvest and up to 4-fold higher phosphorus removal (0.34 g P m-2 d-1) through a combination of algal phosphorus assimilation and some P-precipitation under photosynthesis-mediated elevated daytime pH levels (pH > 9.0). This research indicates that FANS have the potential to require less than half the land area of constructed wetlands for the same level of nitrogen removal and that they require only a few weeks to establish to achieve full performance. Moreover, FANS have the further benefit of resource recovery for beneficial re-use of harvested algal biomass for animal feed, fertiliser, or biofuel.


Assuntos
Clorófitas , Água , Biomassa , Nitratos , Nitrogênio , Nutrientes , Compostos Orgânicos , Fósforo
3.
J Environ Manage ; 286: 112197, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636629

RESUMO

This study compared light and dark disinfection of faecal bacteria/viral indicator organisms (E. coli and MS2 (fRNA) bacteriophage) and human viruses (Echovirus and Norovirus) in Wastewater Treatment Pond (WTP) mesocosms. Stirred pond mesocosms were operated in either outdoor sunlight-exposed or laboratory dark conditions in two experiments during the austral summer. To investigate wavelength-dependence of sunlight disinfection, three optical filters were used: (1) polyethylene film (light control: transmitting all solar UV and visible wavelengths), (2) acrylic (removing most UVB <315 nm), and (3) polycarbonate (removing both UVB and UVA <400 nm). To assess different dark disinfection processes WTP effluent was treated before spiking with target microbes, by (a) 0.22 µm filtration to remove all but colloidal particles, (b) 0.22 µm filtration followed by heat treatment to destroy enzymes, and (c) addition of Cytochalasin B to supress protozoan grazing. Microbiological stocks containing E. coli, MS2 phage, Echovirus, and Norovirus were spiked into each mesocosm 10 min before the experiments commenced. The light control exposed to all sunlight wavelengths achieved >5-log E. coli and MS2 phage removal (from ~1.0 × 106 to <1 PFU/mL) within 3 h compared with up to 6 h in UV-filtered mesocosms. This result confirms that UVB contributes to inactivation of E. coli and viruses by direct sunlight inactivation. However, the very high attenuation with depth of UVB in WTP water (99% removal in the top 8 cm) suggests that UVB disinfection may be less important than other removal processes averaged over time and full-scale pond depth. Dark removal was appreciably slower than sunlight-mediated inactivation. The dark control typically achieved higher removal of E. coli and viruses than the 0.22 µm filtered (dark) mesocosms. This result suggests that adsorption of E. coli and viruses to WTP particles (e.g., algae and bacteria bio-flocs) is an important mechanism of dark disinfection, while bacteria and virus characteristics (e.g. surface charge) and environmental conditions can influence dark disinfection processes.


Assuntos
Desinfecção , Purificação da Água , Escherichia coli , Humanos , Lagoas , Luz Solar , Raios Ultravioleta , Microbiologia da Água
4.
Water Res ; 136: 150-159, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501759

RESUMO

Enhanced pond systems (EPS) consist of a series of ponds that have been designed to work in synergy to provide both cost-effective enhanced wastewater treatment and resource recovery, in the form of algal biomass, for beneficial reuse. Due to the limited number of full-scale EPS systems worldwide, our understanding of factors governing both enhanced wastewater treatment and resource recovery is limited. This paper investigates the seasonal performance of a full-scale municipal wastewater EPS with respect to nutrient removal from the liquid fraction, microalgal biomass production and subsequent removal through the system. In the high rate algal pond both microalgal productivity (determined as organic matter and chlorophyll a biomass) and NH4-N removal varied seasonally, with significantly higher biomass and removal rates in summer than in spring (p < 0.05) or winter (p < 0.01). Microalgal biomass was not successfully harvested in the algal harvester pond (AHP), most likely due to poor flocc formation coupled with relatively short hydraulic residence time (HRT). High percentage removal rates, from sedimentation and zooplankton grazing, were achieved in the maturation pond (MP) series, particularly in winter and spring. However, in summer decreased efficiency of biomass removal and the growth of new microalgal species suggests that summer-time HRT in the MPs could be shortened. Further modifications to the operation of the AHP, seasonal changes in the HRT of the MPs and potential harvesting of zooplankton grazers are all potential strategies for improving resource recovery and producing a higher quality final discharge effluent.


Assuntos
Lagoas/química , Águas Residuárias/química , Purificação da Água/métodos , Biomassa , Clorofila/metabolismo , Clorofila A , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Lagoas/parasitologia , Estações do Ano , Águas Residuárias/parasitologia
5.
Water Res ; 124: 504-512, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28802135

RESUMO

In the last decade, studies have focused on identifying the most suitable microalgal species for coupled high rate algal pond (HRAP) wastewater treatment and resource recovery. However, one of the challenges facing outdoor HRAP systems is maintaining microalgal species dominance. By increasing our understanding of the environmental drivers of microalgal community composition within the HRAP environment, it may be possible to manipulate the system in such a way to favour the growth of desirable species. In this paper, we investigate the microalgal community composition in two full-scale HRAPs over a 23-month period. We compare wastewater treatment performance between dominant species and identify the environmental drivers that trigger change in community composition. A total of 33 microalgal species were identified over the 23-month period but species richness (the number of species present at any given time) was low and was not related to either productivity or nutrient removal efficiency. Species turnover of the dominant microalgae happened rapidly, typically <1 week. Changes in the influent NH4-N concentration and zooplankton grazer numbers were significantly associated with species turnover, accounting for 80% of the changes in dominant species throughout the 23-month study period. Both nutrient removal and biomass production did not differ between the two HRAPs when the dominant species was the same or differed in the two ponds. These results suggest that microalgal functional groups are more important than individual species for full-scale HRAP performance. This study has increased our understanding of some of the environmental drivers of the microalgae within the HRAP environment, which may assist with improving wastewater treatment and resource recovery.


Assuntos
Microalgas , Águas Residuárias , Biomassa , Lagoas , Dinâmica Populacional , Purificação da Água
6.
Water Res ; 89: 301-8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26707731

RESUMO

Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs.


Assuntos
Dióxido de Carbono/farmacologia , Microalgas/crescimento & desenvolvimento , Fotossíntese , Eliminação de Resíduos Líquidos/métodos , Biomassa , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Lagoas , Estações do Ano , Águas Residuárias/química
7.
Water Res ; 87: 97-104, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26397451

RESUMO

Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 µm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling.


Assuntos
Clorófitas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Biomassa , Nova Zelândia , Reciclagem , Águas Residuárias
8.
Bioresour Technol ; 184: 222-229, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25453429

RESUMO

With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.


Assuntos
Biocombustíveis , Microalgas/metabolismo , Fotossíntese , Lagoas , Águas Residuárias , Purificação da Água/métodos
9.
Water Res ; 70: 86-96, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25514661

RESUMO

The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.


Assuntos
Luz , Microalgas/efeitos da radiação , Fotossíntese , Biomassa , Escuridão , Microalgas/metabolismo , Microalgas/fisiologia , Modelos Teóricos , Oxigênio/metabolismo
10.
Water Res ; 70: 9-26, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499895

RESUMO

Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity, particularly in summer. This paper investigates the effects of CO2 addition along a pH gradient on the performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, electron transport rate, photosynthetic efficiency, biomass production and nutrient removal efficiency. Light absorption by the microalgae increased by up to 128% with increasing CO2 supply, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. CO2 augmentation increased the maximum rate of both electron transport and photosynthesis by up to 256%. This led to increased biomass, with the highest yield occurring at the highest dissolved inorganic carbon/lowest pH combination tested (pH 6.5), with a doubling of chlorophyll-a (Chl-a) biomass while total microalgal biovolume increased by 660% in Micractinium bornhemiense and by 260% in Pediastrum boryanum dominated cultures. Increased microalgal biomass did not off-set the reduction in ammonia volatilisation in the control and overall nutrient removal was lower with CO2 than without. Microalgal nutrient removal efficiency decreased as pH decreased and may have been related to decreased Chl-a per cell. This experiment demonstrated that CO2 augmentation increased microalgal biomass in two distinct communities, however, care must be taken when interpreting results from standard biomass measurements with respect to CO2 augmentation.


Assuntos
Biomassa , Dióxido de Carbono/administração & dosagem , Concentração de Íons de Hidrogênio , Luz , Microalgas/fisiologia , Águas Residuárias , Microalgas/metabolismo , Oxigênio/metabolismo , Fotossíntese , Especificidade da Espécie
11.
Water Res ; 66: 53-62, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25189477

RESUMO

When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.


Assuntos
Microalgas/metabolismo , Fotossíntese , Eliminação de Resíduos Líquidos
12.
Water Res ; 61: 130-40, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24911561

RESUMO

Laminar flows are a common problem in high rate algal ponds (HRAP) due to their long channels and gentle mixing by a single paddlewheel. Sustained laminar flows may modify the amount of light microalgal cells are exposed to, increase the boundary layer between the cell and the environment and increase settling out of cells onto the pond bottom. To date, there has been little focus on the effects of the time between mixing events (frequency of mixing) on the performance of microalgae in wastewater treatment HRAPs. This paper investigates the performance of three morphologically distinct microalgae in wastewater treatment high rate algal mesocosms operated at four different mixing frequencies (continuous, mixed every 45 min, mixed every 90 min and no mixing). Microalgal performance was measured in terms of biomass concentration, nutrient removal efficiency, light utilisation and photosynthetic performance. Microalgal biomass increased significantly with increasing mixing frequency for the two colonial species but did not differ for the single celled species. All three species were more efficient at NH4-N uptake as the frequency of mixing increased. Increased frequency of mixing supported larger colonies with improved harvest-ability by gravity but at the expense of efficient light absorption and maximum rate of photosynthesis. However, maximum quantum yield was highest in the continuously mixed cultures due to higher efficiency of photosynthesis under light limited conditions. Based on these results, higher microalgal productivity, improved wastewater treatment and better gravity based harvest-ability can be achieved with the inclusion of more mixing points and reduced laminar flows in full-scale HRAP.


Assuntos
Clorófitas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Adaptação Fisiológica , Microalgas/metabolismo , Fotossíntese , Lagoas/análise , Especificidade da Espécie
13.
Water Res ; 60: 130-140, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24852411

RESUMO

The colonial alga Pediastrum boryanum has beneficial characteristics for wastewater treatment High Rate Algal Ponds (HRAP) including high biomass productivity and settleability. Our previous work has shown that these characteristics are enhanced when a portion of gravity harvested algae is recycled back to the pond. To help understand the mechanisms behind the improved performance of P. boryanum dominated HRAP with algal recycling, this study investigated the life-cycle of P. boryanum. Experiments determined the exact timing and growth rate of P. boryanum life-cycle stages ('juvenile', 'growth' and 'reproductive') under four combinations of light and temperature (250 or 120 µMol/m(2)/s; 20 or 10 °C). Single juvenile 16-celled colonies were grown in microcosms on an inverted microscope and photographed every 15 min until reproduction ceased. Two asexual life-cycles and a rarely occurring sexual life-cycle were observed. The time required to achieve asexual reproductive maturity increased from 52 h (high light and temperature) to 307 h (low light and temperature), indicating that the minimum hydraulic retention time or mean cell residence time (MCRT) must be higher than these values to sustain a P. boryanum HRAP culture under ambient conditions. The net growth rate of a P. boryanum colony varied between life-cycle stages (growth > juvenile > reproductive). This suggests that the higher biomass productivity measured in HRAP with algal recycling could be due to both the increased MCRT and an increase in the net growth rate of the HRAP culture by 'seeding' with faster growing colonies.


Assuntos
Clorófitas/fisiologia , Eliminação de Resíduos Líquidos , Clorófitas/crescimento & desenvolvimento , Luz , Lagoas , Reciclagem , Temperatura
14.
Water Res ; 53: 271-81, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24530547

RESUMO

Depth has been widely recognised as a crucial operational feature of a high rate algal pond (HRAP) as it modifies the amount of light and frequency at which microalgal cells are exposed to optimal light. To date, there has been little focus on the optimisation of microalgal performance in wastewater treatment HRAPs with respect to depth, with advice ranging from as shallow as possible to 100 cm deep. This paper investigates the seasonal performance of microalgae in wastewater treatment HRAPs operated at three different depths (200, 300 and 400 mm). Microalgal performance was measured in terms of biomass production and areal productivity, nutrient removal efficiency and photosynthetic performance. The overall areal productivity significantly increased with increasing depth. Areal productivity ranged from 134 to 200% higher in the 400 mm deep HRAP compared to the 200 mm deep HRAP. Microalgae in the 400 mm deep HRAP were more efficient at NH4-N uptake and were photosynthetically more efficient compared to microalgae in the 200 mm deep HRAP. A higher chlorophyll-a concentration in the 200 mm deep HRAP resulted in a decrease in photosynthetic performance, due to insufficient carbon supply, over the course of the day in summer (as indicated by lower α, Pmax and oxygen production) compared to the 300 and 400 mm deep HRAPs. Based on these results, improved areal productivity and more wastewater can be treated per land area in the 400 mm deep HRAPs compared to 200 mm deep HRAPs without compromising wastewater treatment quality, while lowering capital and operational costs.


Assuntos
Biomassa , Clorófitas/metabolismo , Microalgas/metabolismo , Lagoas , Eliminação de Resíduos Líquidos/métodos , Nova Zelândia , Fotossíntese , Estações do Ano , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/normas
15.
Water Res ; 46(9): 2911-26, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22480899

RESUMO

We implemented the IWA River Water Quality Model No. 1 (Reichert et al., 2001. River Water Quality Model No. 1, IWA Scientific & Technical Report No. 12) to simulate water-quality characteristics in two pilot-scale High Rate Algal Ponds. Simulation results were compared with two years' of data from the ponds. The first year's data from one pond were used for model calibration; the remaining data were used for validation. As originally formulated and parameterized, the model consistently yielded summer-time algal biomass concentrations which were too low - with consequent failures in its reproduction of dissolved oxygen, pH and nutrient dynamics. We experimented with various structural/parametric changes to improve the model's performance. The most effective strategy was to greatly increase the respiratory losses suffered by the heterotrophic osmotrophs (thereby giving the algae access to a larger fraction of the incoming dissolved organic carbon and nitrogen). This suggests that CO(2)-bubbling alone cannot entirely preclude resource-limitation of algal production. We doubt that our parameterization of heterotrophic osmotrophs is correct and infer that the algae derive a large fraction of their nutrition by direct osmotrophic uptake of dissolved organic matter. This inference is supported by the literature concerning the physiology of the dominant algal species in our ponds.


Assuntos
Microalgas/metabolismo , Modelos Teóricos , Biomassa , Calibragem , Projetos Piloto
16.
Environ Sci Technol ; 45(8): 3702-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21446652

RESUMO

While temperature is fundamental to the design and optimal operation of shallow algal ponds, there is currently no temperature model universally applicable to these systems. This paper presents a model valid for any opaque water body of uniform temperature profile. This new universal model was tested against 1 year of experimental data collected from a wastewater treatment high rate algal pond. On the basis of 1 year of data collected every 15 min, the average errors of the predicted afternoon peak and predawn minimum were both only 1.3 °C and the average error between these extremes was just 1.2 °C. In order to demonstrate the improvement in accuracy gained, the expressions for heat fluxes used in nine prior temperature models were systematically substituted into the new universal model and evaluated against the experimental data. Errors in the peak and minimum temperatures increased by up to 2.1 and 3.2 °C, respectively, while the error between these extremes increased by up to 2.9 °C. In practical applications, these levels of inaccuracies could lead to an under/overestimation of the algal productivity and the evaporative water loss by approximately 40% and 300%, respectively.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/química , Microalgas/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Atmosfera/química , Convecção , Água Doce/análise , Luz Solar , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...