Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38124397

RESUMO

An individual's chronological age does not always correspond to the health of different tissues in their body, especially in cases of disease. Therefore, estimating and contrasting the physiological age of tissues with an individual's chronological age may be a useful tool to diagnose disease and its progression. In this study, we present novel metrics to quantify the loss of phylogenetic diversity in hematopoietic stem cells (HSCs), which are precursors to most blood cell types and are associated with many blood-related diseases. These metrics showed an excellent correspondence with an age-related increase in blood cancer incidence, enabling a model to estimate the phylogeny-derived age (phyloAge) of HSCs present in an individual. The HSC phyloAge was generally older than the chronological age of patients suffering from myeloproliferative neoplasms (MPNs). We present a model that relates excess HSC aging with increased MPN risk. It predicted an over 200 times greater risk based on the HSC phylogenies of the youngest MPN patients analyzed. Our new metrics are designed to be robust to sampling biases and do not rely on prior knowledge of driver mutations or physiological assessments. Consequently, they complement conventional biomarker-based methods to estimate physiological age and disease risk.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Filogenia , Células-Tronco Hematopoéticas/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Envelhecimento
2.
Front Bioinform ; 3: 1233281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727796

RESUMO

The origin of eukaryotes was among the most important events in the history of life, spawning a new evolutionary lineage that led to all complex multicellular organisms. However, the timing of this event, crucial for understanding its environmental context, has been difficult to establish. The fossil and biomarker records are sparse and molecular clocks have thus far not reached a consensus, with dates spanning 2.1-0.91 billion years ago (Ga) for critical nodes. Notably, molecular time estimates for the last common ancestor of eukaryotes are typically hundreds of millions of years younger than the Great Oxidation Event (GOE, 2.43-2.22 Ga), leading researchers to question the presumptive link between eukaryotes and oxygen. We obtained a new time estimate for the origin of eukaryotes using genetic data of both archaeal and bacterial origin, the latter rarely used in past studies. We also avoided potential calibration biases that may have affected earlier studies. We obtained a conservative interval of 2.2-1.5 Ga, with an even narrower core interval of 2.0-1.8 Ga, for the origin of eukaryotes, a period closely aligned with the rise in oxygen. We further reconstructed the history of biological complexity across the tree of life using three universal measures: cell types, genes, and genome size. We found that the rise in complexity was temporally consistent with and followed a pattern similar to the rise in oxygen. This suggests a causal relationship stemming from the increased energy needs of complex life fulfilled by oxygen.

3.
Front Bioinform ; 3: 1284744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162123

RESUMO

The primate infraorder Simiiformes, comprising Old and New World monkeys and apes, includes the most well-studied species on earth. Their most comprehensive molecular timetree, assembled from thousands of published studies, is found in the TimeTree database and contains 268 simiiform species. It is, however, missing 38 out of 306 named species in the NCBI taxonomy for which at least one molecular sequence exists in the NCBI GenBank. We developed a three-pronged approach to expanding the timetree of Simiiformes to contain 306 species. First, molecular divergence times were searched and found for 21 missing species in timetrees published across 15 studies. Second, untimed molecular phylogenies were searched and scaled to time using relaxed clocks to add four more species. Third, we reconstructed ten new timetrees from genetic data in GenBank, allowing us to incorporate 13 more species. Finally, we assembled the most comprehensive molecular timetree of Simiiformes containing all 306 species for which any molecular data exists. We compared the species divergence times with those previously imputed using statistical approaches in the absence of molecular data. The latter data-less imputed times were not significantly correlated with those derived from the molecular data. Also, using phylogenies containing imputed times produced different trends of evolutionary distinctiveness and speciation rates over time than those produced using the molecular timetree. These results demonstrate that more complete clade-specific timetrees can be produced by analyzing existing information, which we hope will encourage future efforts to fill in the missing taxa in the global timetree of life.

4.
Mol Biol Evol ; 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932227

RESUMO

We present the fifth edition of the TimeTree of Life resource (TToL5), a product of the timetree of life project that aims to synthesize published molecular timetrees and make evolutionary knowledge easily accessible to all. Using the TToL5 web portal, users can retrieve published studies and divergence times between species, the timeline of a species' evolution beginning with the origin of life, and the timetree for a given evolutionary group at the desired taxonomic rank. TToL5 contains divergence time information on 137,306 species, 41% more than the previous edition. The TToL5 web interface is now ADA-compliant and mobile-friendly, a result of comprehensive source code refactoring. TToL5 also offers programmatic access to species divergence times and timelines through an application programming interface, which is accessible at timetree.temple.edu/api. TToL5 is publicly available at timetree.org.

5.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166841

RESUMO

Biodiversity analyses of phylogenomic timetrees have produced many high-profile examples of shifts in the rate of speciation across the tree of life. Temporally correlated events in ecology, climate, and biogeography are frequently invoked to explain these rate shifts. In a re-examination of 15 genomic timetrees and 25 major published studies of the pattern of speciation through time, we observed an unexpected correlation between the timing of reported rate shifts and the information content of sequence alignments. Here, we show that the paucity of sequence variation and insufficient species sampling in phylogenomic data sets are the likely drivers of many inferred speciation rate shifts, rather than the proposed biological explanations. Therefore, data limitations can produce predictable but spurious signals of rate shifts even when speciation rates may be similar across taxa and time. Our results suggest that the reliable detection of speciation rate shifts requires the acquisition and assembly of long phylogenomic alignments with near-complete species sampling and accurate estimates of species richness for the clades of study.


Assuntos
Biodiversidade , Especiação Genética , Clima , Ecologia , Filogenia
6.
Neotrop. ichthyol ; 18(2): e200004, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135390

RESUMO

Here we explore the use of community phylogenetics as a tool to document patterns of biodiversity in the Fitzcarrald region, a remote area in Southwestern Amazonia. For these analyses, we subdivide the region into basin-wide assemblages encompassing the headwaters of four Amazonian tributaries (Urubamba, Yuruá, Purús and Las Piedras basins), and habitat types: river channels, terra firme (non-floodplain) streams, and floodplain lakes. We present a robust, well-documented collection of fishes from the region including 272 species collected from 132 field sites over 63 field days and four years, comprising the most extensive collection of fishes from this region to date. We conduct a preliminary community phylogenetic analysis based on this collection and recover results largely statistically indistinguishable from the random expectation, with only a few instances of phylogenetic structure. Based on these results, and of those published in other recent biogeographic studies, we conclude that the Fitzcarrald fish species pool accumulated over a period of several million years, plausibly as a result of dispersal from the larger species pool of Greater Amazonia.(AU)


Aquí exploramos el uso de la filogenética de comunidades como herramienta para documentar patrones de biodiversidad en la región de Fitzcarrald, un área remota en el suroeste de la Amazonía. Para estos análisis subdividimos la región en grupos de toda la cuenca que abarcan las cabeceras de cuatro tributarios del Amazonas (cuencas Urubamba, Yuruá, Purús y Las Piedras) y en los tipos de hábitat: canales fluviales, arroyos de tierra firme (sin planicie aluvial) y lagos de planicie aluvial. Presentamos una colección de peces robusta y bien documentada que incluye 272 especies, colectadas a lo largo de cuatro años y 63 días de campo, en 132 puntos de monitoreo. Convirtiéndose en la colección más extensa de peces de esta región hasta la fecha. Realizamos un análisis filogenético preliminar de la comunidad basado en esta recopilación y recuperamos resultados en gran medida estadísticamente indistinguibles de la expectativa aleatoria, con sólo unos pocos casos de estructura filogenética. Basándonos en estos resultados y los publicados en otros estudios biogeográficos recientes, concluimos que el grupo de especies de peces de Fitzcarrald acumulado durante un período de varios millones de años, se debe posiblemente al resultado de la dispersión del mayor grupo de especies de la Gran Amazonia.(AU)


Assuntos
Animais , Filogenia , Ecossistema , Ecossistema Amazônico , Biodiversidade , Rios
7.
PLoS One ; 14(11): e0224599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697735

RESUMO

The diversity of gymnotid electric fishes has been intensely studied over the past 25 years, with 35 species named since 1994, compared to 11 species in the previous 236 years. Substantial effort has also been applied in recent years to documenting gymnotid interrelationships, with seven systematic studies published using morphological and molecular datasets. Nevertheless, until now, all gymnotids have been assigned to one of just two supraspecific taxa, the subfamily Electrophorinae with one genus Electrophorus and three valid species and the subfamily Gymnotine also with one genus Gymnotus and 43 valid species. This simple classification has obscured the substantial phenotypic and lineage diversity within the subfamily Gymnotine and hampered ecological and evolutionary studies of gymnotid biology. Here we present the most well-resolved and taxon-complete phylogeny of the Gymnotidae to date, including materials from all but one of the valid species. This phylogeny was constructed using a five-gene molecular dataset and a 115-character morphological dataset, enabling the inclusion of several species for which molecular data are still lacking. This phylogeny was time-calibrated using biogeographical priors in the absence of a fossil record. The tree topology is similar to those of previous studies, recovering all the major clades previously recognized with informal names. We propose a new gymnotid classification including two subfamilies (Electrophorinae and Gymnotinae) and six subgenera within the genus Gymnotus. Each subgenus exhibits a distinctive biogeographic distribution, within which most species have allopatric distributions and the subgenera are diverged from one another by an estimated 5-35 million years. We further provide robust taxonomic diagnoses, descriptions and identification keys to all gymnotid subgenera and all but four species. This new taxonomy more equitably partitions species diversity among supra-specific taxa, employing the previously vacant subgenus and subfamily ranks. This new taxonomy renders known gymnotid diversity more accessible to study by highlighting the deep divergences (chronological, geographical, genetic and morphological) among its several clades.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Gimnotiformes/genética , Filogenia , Animais , Peixes/genética , Gimnotiformes/classificação
8.
Neotrop. ichthyol ; 17(2): e180156, 2019. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1012706

RESUMO

The Amazonian ichthyofauna is one of the most diverse in the world, yet fishes from the adjacent coastal basins of Maranhão State in Northeastern Brazil remain poorly known. We use phylogeographic, community phylogenetic and phylogenetic beta diversity methods to study the biogeographic history of fishes from the coastal basins of Maranhão State. We report a total of 160 fish species from the basins of the Maranhão region, representing a 93% increase over results of previous studies. All the fish species assemblages from Maranhão are polyphyletic, with only a few putative sister species pairs inhabiting the region. The modern watershed divides among Maranhão basins do not form substantial barriers to dispersal for freshwater fish species, and are more effectively modelled as biogeographic islands than as biogeographic provinces. In combination these results suggest that the Maranhão ichthyofauna was assembled under the influence of several macroevolutionary (extinction, dispersal) and landscape evolution processes, during the Miocene and Pliocene, as well as by the modern ecological characteristics of the region. The results indicate that the distinctive geological and climatic conditions and history of Northeastern Brazil strongly constrained the formation of aquatic faunas in coastal basins of Maranhão State.(AU)


A ictiofauna da Amazônia é uma das mais diversificadas do mundo, mas os peixes das bacias costeiras adjacentes do estado do Maranhão, no Nordeste do Brasil, ainda são pouco conhecidos. Utilizamos métodos filogeográficos, filogenia de comunidade e de diversidade beta filogenética para estudar a história biogeográfica de peixes das bacias costeiras do estado do Maranhão. Nós relatamos um total de 160 espécies de peixes das bacias da região do Maranhão, representando um aumento de 93% sobre os resultados de estudos anteriores. Todas as assembleias de espécies de peixes do Maranhão são polifiléticas, com apenas alguns supostos pares de espécies irmãs habitando a região. As divisões modernas das bacias hidrográficas do Maranhão não formam barreiras substanciais para a dispersão de espécies de peixes de água doce, e são mais efetivamente modeladas como ilhas biogeográficas do que como províncias biogeográficas. Em conjunto, esses resultados sugerem que a ictiofauna maranhense foi montada sob a influência de vários processos de evolução macroevolutiva (extinção, dispersão) e paisagística, durante o Mioceno e Plioceno, bem como pelas características ecológicas modernas da região. Os resultados indicam que as distintas condições geológicas e climáticas e a história do Nordeste do Brasil restringiram fortemente a formação de faunas aquáticas em bacias costeiras do estado do Maranhão.(AU)


Assuntos
Animais , Filogenia , Biodiversidade , Peixes/crescimento & desenvolvimento
9.
Zootaxa ; 4379(1): 47-73, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29689973

RESUMO

Banded Knifefishes (Gymnotus, Gymnotidae) comprise the most species-rich, ecologically tolerant (eurytopic), and geographically widespread genus of Neotropical electric fishes (Gymnotiformes), with 40 valid species occupying most habitats and regions throughout the humid Neotropics. Despite substantial alpha-taxonomic work in recent years, parts of the genus remain characterized by taxonomic confusion. Here we describe and delimit species of the G. carapo and G. tigre clades from the southern Neotropics, using body proportions (caliper-based morphometrics), fin-ray, scale and laterosensory-pore counts (meristics), quantitative shape differences (geometric morphometrics), osteology, color patterns and electric organ discharges. We report these data from 174 Gymnotus specimens collected from 100 localities throughout the southern Neotropics, and delimit species boundaries in a multivariate statistical framework. We find six species of the G. carapo clade (G. carapo australis, G. cuia n. sp., G. chimarrao, G. omarorum, G. pantanal, and G. sylvius), and two species of the G. tigre clade (G. inaequilabiatus and G. paraguensis) in the southern Neotropics. The new species G. cuia is readily distinguished from the morphologically similar and broadly sympatric G. c. australis by a shorter head and deeper head and body, and from the morphologically similar and sympatric G. omarorum by fewer lateral-line ventral rami and fewer pored lateral-line scales anterior to the first ventral ramus. We also review the geographic distributions of all eight species of the G. carapo and G. tigre clades in the southern Neotropics, showing that G. cuia is the most widespread species in the region. These results affirm the importance of understanding the structure of variation within and between species, both geographic and ontogenetic, in delimiting species boundaries.


Assuntos
Gimnotiformes , Animais
10.
Zootaxa ; 4413(1): 111-132, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29690122

RESUMO

Banded Knifefishes (Gymnotus, Gymnotidae) comprise the most species-rich genus of Neotropical electric fishes, with 41 species currently described from throughout the humid Neotropics, from Mexico to Argentina. Despite substantial alpha-taxonomic work in recent years, the diversity of Gymnotus in some regions remains poorly understood. Here we describe the Gymnotus fauna of the Upper Madeira basin of Bolivia and Peru from examination of more than 240 adult specimens. Species are delimited and described using body proportions (traditional morphometrics), fin-ray, squamation and laterosensory-pore counts (meristics), quantitative shape differences (geometric morphometrics), osteological traits, and color patterns. Comparisons of standardized linear measures as well as multivariate statistical methods validate the presence in the Upper Madeira basin of three previously described species, two with wide-spread geographic distributions throughout Greater Amazonia (G. carapo and G. coropinae), and one (G. chaviro) endemic to southwestern Amazonia. We also diagnose and describe two new species that are endemic to the Upper Madeira basin: G. eyra n. sp., morphologically most similar to G. mamiraua from lowland Amazonia, and G. riberalta n. sp., morphologically most similar to G. pantanal from the Paraguay-Paraná basin. The five Gymnotus species from the Upper Madeira basin are not monophyletic, each species being more closely related to a different species from another region; i.e. the Gymnotus species from the Upper Madeira represents a polyphyletic assemblage. These descriptions to 43 the number of valid Gymnotus species.


Assuntos
Gimnotiformes , Animais , Argentina , Bolívia , México , Paraguai , Peru
11.
Data Brief ; 7: 23-59, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26955648

RESUMO

Data is presented in support of model-based total evidence (MBTE) phylogenetic reconstructions of the Neotropical clade of Gymnotiformes "Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnotiformes)" (Tagliacollo et al., 2016) [1]). The MBTE phylogenies were inferred using a comprehensive dataset comprised of six genes (5277 bp) and 223 morphological characters for an ingroup taxon sample of 120 of 218 valid species and 33 of the 34 extant genera. The data in this article include primer sequences for gene amplification and sequencing, voucher information and GenBank accession numbers, descriptions of morphological characters, morphological synapomorphies for the recognized clades of Gymnotiformes, a supermatrix comprised of concatenated molecular and morphological data, and computer scripts to replicate MBTE inferences. We also included here Maximum-likelihood and Bayesian topologies, which support two main gymnotiform clades: Gymnotidae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (Rhamphichthyidae+Hypopomidae) and Sinusoidea (Sternopygidae+Apteronotidae).

12.
Mol Phylogenet Evol ; 95: 20-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26616344

RESUMO

This study provides the most comprehensive Model-Based Total Evidence (MBTE) phylogenetic analyses of the clade Gymnotiformes to date, reappraising relationships using a dataset comprised of six genes (5277bp) and 223 morphological characters, and an ingroup taxon sample including 120 of 212 valid species representing 34 of the 35 extant genera. Our MBTE analyses indicate the two main gymnotiform clades are Gymnotidae and Sternopygoidei, the latter comprised of Rhamphichthyoidea (Rhamphichthyidae+Hypopomidae) and Sinusoidea (Sternopygidae+Apteronotidae). Within Gymnotidae, Electrophorus and Gymnotus are sister taxa, and Gymnotus includes the following six clades: (i) G. pantherinus clade, (ii) G. coatesi clade, (iii) G. anguillaris clade, (iv) G. tigre clade, (v) G. cylindricus clade, and (vi) G. carapo clade. Within Rhamphichthyoidea, Steatogenae (Steatogenys+Hypopygus) is a member of Rhamphichthyidae, and Hypopomidae includes the following clades: (i) Akawaio, (ii) Hypopomus, (iii) Microsternarchini, and (iv) Brachyhypopomus. Within Sternopygidae, Sternopygus and Eigenmanninae are sister groups, Rhabdolichops is the sister to other Eigenmanninae, Archolaemus+Distocyclus is the sister to Eigenmannia, and Japigny is nested within Eigenmannia. Within Apteronotidae, Sternarchorhamphinae (Sternarchorhamphus+Orthosternarchus) is the sister to Apteronotinae, Adontosternarchus is the sister group to other Apteronotinae, Sternarchorhynchini (Sternarchorhynchus+Platyurosternarchus) is the sister to Navajini, and species assigned to Apteronotus are members of two separate clades: (i) A. sensu stricto in the Apteronotini, and (ii) the "A." bonapartii clade in the Navajini.


Assuntos
Gimnotiformes/classificação , Gimnotiformes/genética , Modelos Genéticos , Filogenia , Animais , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Seleção Genética , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...