Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Commun Med (Lond) ; 4(1): 106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862781

RESUMO

BACKGROUND: Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS: To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS: Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION: Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.


Spaceflight is a hostile environment which can lead to health problems in astronauts, including in the skin. It is not currently well understood why these skin problems occur. Here, we analyzed data from the skin of space flown mice and astronauts to try and identify possible explanations for these skin problems. It appears that changes in the activation of genes related to damage to DNA, skin barrier health, and mitochondria (the energy-producing parts of cells) may play a role in these skin problems. Further research will be needed to confirm exactly how these changes influence skin health, which could lead to solutions for preventing and managing such issues in astronauts.

2.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693246

RESUMO

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

3.
Cells ; 12(20)2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887314

RESUMO

Background: Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. Methods: We employed the worm Caenorhabditis elegans as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and dys-1 (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Results: Neuromuscular strength was lower in flight versus ground controls (16.6% decline, p < 0.05), with dys-1 significantly more (23% less strength, p < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in dys-1 animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Conclusions: Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.


Assuntos
Proteínas de Caenorhabditis elegans , Voo Espacial , Humanos , Animais , Caenorhabditis elegans/metabolismo , Acetilcolina/metabolismo , Cálcio/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Distrofina/genética
4.
J Appl Physiol (1985) ; 135(5): 1135-1145, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823203

RESUMO

The ability of skeletal muscle to adapt to eccentric contractions has been suggested to be blunted in older muscle. If eccentric exercise is to be a safe and efficient training mode for older adults, preclinical studies need to establish if older muscle can effectively adapt and if not, determine the molecular signatures that are causing this impairment. The purpose of this study was to quantify the extent age impacts functional adaptations of muscle and identify genetic signatures associated with adaptation (or lack thereof). The anterior crural muscles of young (4 mo) and older (28 mo) female mice performed repeated bouts of eccentric contractions in vivo (50 contractions/wk for 5 wk) and isometric torque was measured across the initial and final bouts. Transcriptomics was completed by RNA-sequencing 1 wk following the fifth bout to identify common and differentially regulated genes. When torques post eccentric contractions were compared after the first and fifth bouts, young muscle exhibited a robust ability to adapt, increasing isometric torque 20%-36%, whereas isometric torque of older muscle decreased up to 18% (P ≤ 0.047). Using differential gene expression, young and older muscles shared some common transcriptional changes in response to eccentric exercise training, whereas other transcripts appeared to be age dependent. That is, the ability to express particular genes after repeated bouts of eccentric contractions was not the same between ages. These molecular signatures may reveal, in part, why older muscles do not appear to be as adaptive to exercise training as young muscles.NEW & NOTEWORTHY The ability to adapt to exercise training may help prevent and combat sarcopenia. Here, we demonstrate young mouse muscles get stronger whereas older mouse muscles become weaker after repeated bouts of eccentric contractions, and that numerous genes were differentially expressed between age groups following training. These results highlight that molecular and functional plasticity is not fixed in skeletal muscle with advancing age, and the ability to handle or cope with physical stress may be impaired.


Assuntos
Músculo Esquelético , Feminino , Animais , Camundongos , Músculo Esquelético/fisiologia , Torque
5.
Front Genet ; 14: 1123826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818103

RESUMO

Several factors, including breed, lead to divergent performance of pigs for production and reproduction traits in different environments. A recent genomics study showed that Modern European (ME) pig breeds contribute to the ancestry of smallholder pigs in the Hoima and Kamuli districts, Uganda. These pigs were also involved in a longitudinal study with several traits recorded, including 540 body weights (WT) of 374 growing pigs, 195 records of total number of piglets born alive (TBA) of 157 sows, and 110 total number weaned (TNW) records of 94 sows. Linear mixed-effects models were used to test for the significance of environmental effects, including housing system, geographic location, and the season when the events occurred as well as animal-specific effects like age, sex, parity, and farrow-to-weaning interval. Stepwise model reduction starting from models with all main effects and pairwise interactions was applied. The final models were then expanded to include proportions of Modern European (ME) ancestry for the subset of animals genotyped, following genomic ancestry analysis based on a Porcine 50K SNP Chip. ME ancestry proportions ranged from 0.02 to 0.50 and were categorized into three classes (low/medium/high ME) based on 33.3% quantiles. The effects of ME classes on WT and TBA were not significant. ME showed a significant effect on TNW. Sows with a high proportion of ME weaned 2.4 piglets more than the low group, the medium ME group being intermediate. This study used genomic data to investigate the effects of genetic ancestry on the performance of smallholder pigs in Uganda. The proportion of Modern European ancestry did not exceed 0.50, therefore not allowing for the comparison of local versus pure "exotic" types of pigs. For the range of ancestries observed, which is the relevant one for current smallholder systems in Uganda, differences were small for the body weight of growing pigs and the number of piglets born alive, while higher proportions of ME ancestry resulted in significantly more piglets weaned. The availability of genotypes of a higher number of growing pigs would have been beneficial for drawing conclusions on the effect of ME ancestry on the growth rates of smallholder pigs in Uganda.

6.
iScience ; 26(7): 107189, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456835

RESUMO

The application of omics to study Caenorhabditis elegans (C. elegans) in the context of spaceflight is increasing, illuminating the wide-ranging biological impacts of spaceflight on physiology. In this review, we highlight the application of omics, including transcriptomics, genomics, proteomics, multi-omics, and integrated omics in the study of spaceflown C. elegans, and discuss the impact, use, and future direction of this branch of research. We highlight the variety of molecular alterations that occur in response to spaceflight, most notably changes in metabolic and neuromuscular gene regulation. These transcriptional features are reproducible and evident across many spaceflown species (e.g., mice and astronauts), supporting the use of C. elegans as a model organism to study spaceflight physiology with translational capital. Integrating tissue-specific, spatial, and multi-omics approaches, which quantitatively link molecular responses to phenotypic adaptations, will facilitate the identification of candidate regulatory molecules for therapeutic intervention and thus represents the next frontiers in C. elegans space omics research.

7.
Proc Natl Acad Sci U S A ; 120(32): e2216141120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523525

RESUMO

Living longer without simultaneously extending years spent in good health ("health span") is an increasing societal burden, demanding new therapeutic strategies. Hydrogen sulfide (H2S) can correct disease-related mitochondrial metabolic deficiencies, and supraphysiological H2S concentrations can pro health span. However, the efficacy and mechanisms of mitochondrion-targeted sulfide delivery molecules (mtH2S) administered across the adult life course are unknown. Using a Caenorhabditis elegans aging model, we compared untargeted H2S (NaGYY4137, 100 µM and 100 nM) and mtH2S (AP39, 100 nM) donor effects on life span, neuromuscular health span, and mitochondrial integrity. H2S donors were administered from birth or in young/middle-aged animals (day 0, 2, or 4 postadulthood). RNAi pharmacogenetic interventions and transcriptomics/network analysis explored molecular events governing mtH2S donor-mediated health span. Developmentally administered mtH2S (100 nM) improved life/health span vs. equivalent untargeted H2S doses. mtH2S preserved aging mitochondrial structure, content (citrate synthase activity) and neuromuscular strength. Knockdown of H2S metabolism enzymes and FoxO/daf-16 prevented the positive health span effects of mtH2S, whereas DCAF11/wdr-23 - Nrf2/skn-1 oxidative stress protection pathways were dispensable. Health span, but not life span, increased with all adult-onset mtH2S treatments. Adult mtH2S treatment also rejuvenated aging transcriptomes by minimizing expression declines of mitochondria and cytoskeletal components, and peroxisome metabolism hub components, under mechanistic control by the elt-6/elt-3 transcription factor circuit. H2S health span extension likely acts at the mitochondrial level, the mechanisms of which dissociate from life span across adult vs. developmental treatment timings. The small mtH2S doses required for health span extension, combined with efficacy in adult animals, suggest mtH2S is a potential healthy aging therapeutic.


Assuntos
Proteínas de Caenorhabditis elegans , Sulfeto de Hidrogênio , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade , Sulfetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fatores de Transcrição GATA/metabolismo
8.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36879400

RESUMO

This study estimated the genetic parameters for human-directed behavior and intraspecific social aggression traits in growing pigs, and explored the phenotypic correlations among them. Data on 2,413 growing pigs were available. Pigs were mixed into new social groups of 18 animals, at 69 ± 5.2 d of age and skin lesions (SL) were counted 24 h (SL24h) post-mixing. Individual behavioral responses to isolation in a weighing crate (CRATE) or when alone in an arena while a human directly approached them (IHAT) were assessed within 48 h post-mixing. Additionally, pigs were tested for behavioral responses to the presence of a single human observer walking in their home pen in a circular motion (WTP) within one (T1) and 4 wk post-mixing (T2) noting pigs that followed, nosed or bit the observer. Animal models were used to estimate genetic and phenotypic parameters for all studied traits. Heritabilities (h2) for SL, CRATE and IHAT responses were low to moderate (0.07 to 0.29), with the highest h2 estimated for speed of moving away from the approaching observer. Low but significant h2 were estimated for nosing (0.09) and biting (0.11) the observer at T2. Positive high genetic correlations (rg) were observed between CRATE and IHAT responses (0.52 to 0.93), and within SL traits (0.79 to 0.91) while positive low to high correlations between the estimated breeding values (rEBV) were estimated within the WTP test (0.24 to 0.59) traits. Positive moderate rg were observed between CRATE and central and posterior SL24h. The rEBV of CRATE and IHAT test responses and WTP test traits were low, mostly negative (-0.21 to 0.05) and not significant. Low positive rEBV (0.06 to 0.24) were observed between SL and the WTP test traits. Phenotypic correlations between CRATE and IHAT responses and SL or WTP test traits were mostly low and not significant. Under the conditions of this study, h2 estimates for all studied traits suggest they could be suitable as a method of phenotyping aggression and fear/boldness for genetic selection purposes. Additionally, genetic correlations between aggression and fear indicators were observed. These findings suggest selection to reduce the accumulation of lesions is likely to make pigs more relaxed in a crate environment, but to alter the engagement with humans in other contexts that depends on the location of the lesions under selection.


We estimated genetic and phenotypic correlations and heritabilities for temperament indicators in growing pigs such as fearfulness (i.e., vocal and physical withdrawal response to an approaching human while isolated in an arena; attempts to escape from a weigh crate); boldness (i.e., biting, following or nosing a human walking inside their home pen) and aggression (i.e., skin lesions). Our results indicate that the studied traits were heritable, and some of these traits could potentially be useful for genetic selection. Additionally, genetic correlations were observed between aggression and fear indicators; pigs with a higher count of skin lesions on their flanks, backs, hind quarters and rear legs 24 h post-mixing (i.e., likely subordinate pigs) tended to display more distress while in isolation in a weigh crate, and were less likely to willingly approach a human. The three boldness indicators were associated, indicating that pigs biting the observer were also those that followed and nosed the observer, suggesting a general increase in exploratory drive and/or a reduction in fearfulness in these animals. These findings suggest that selection to reduce lesions to the rear of the body could have a desirable impact on other important behavioral indicators.


Assuntos
Dermatopatias , Doenças dos Suínos , Suínos/genética , Humanos , Animais , Agressão , Dermatopatias/veterinária , Fenótipo , Cruzamento , Medo , Comportamento Animal/fisiologia
9.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36762426

RESUMO

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Assuntos
Acromegalia , Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Masculino , Feminino , Bovinos , Condrócitos/metabolismo , Acromegalia/metabolismo , Acromegalia/patologia , Microtomografia por Raio-X , Hormônio do Crescimento/metabolismo , Cartilagem Articular/metabolismo , Camundongos Transgênicos
10.
Geroscience ; 45(3): 1271-1287, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36161583

RESUMO

Resistance exercise training (RET) can counteract negative features of muscle ageing but older age associates with reduced adaptive capacity to RET. Altered muscle protein networks likely contribute to ageing RET adaptation; therefore, associated proteome-wide responses warrant exploration. We employed quantitative sarcoplasmic proteomics to compare age-related proteome and phosphoproteome responses to RET. Thigh muscle biopsies were collected from eight young (25 ± 1.1 years) and eight older (67.5 ± 2.6 years) adults before and after 20 weeks supervised RET. Muscle sarcoplasmic fractions were pooled for each condition and analysed using Isobaric Tags for Relative and Absolute Quantification (iTRAQ) labelling, tandem mass spectrometry and network-based hub protein identification. Older adults displayed impaired RET-induced adaptations in whole-body lean mass, body fat percentage and thigh lean mass (P > 0.05). iTRAQ identified 73 differentially expressed proteins with age and/or RET. Despite possible proteomic stochasticity, RET improved ageing profiles for mitochondrial function and glucose metabolism (top hub; PYK (pyruvate kinase)) but failed to correct altered ageing expression of cytoskeletal proteins (top hub; YWHAZ (14-3-3 protein zeta/delta)). These ageing RET proteomic profiles were generally unchanged or oppositely regulated post-RET in younger muscle. Similarly, RET corrected expression of 10 phosphoproteins altered in ageing, but these responses were again different vs. younger adults. Older muscle is characterised by RET-induced metabolic protein profiles that, whilst not present in younger muscle, improve untrained age-related proteomic deficits. Combined with impaired cytoskeletal adhesion responses, these results provide a proteomic framework for understanding and optimising ageing muscle RET adaptation.


Assuntos
Treinamento Resistido , Humanos , Idoso , Treinamento Resistido/métodos , Proteoma/metabolismo , Proteômica , Músculo Esquelético/metabolismo , Envelhecimento/fisiologia
11.
Patterns (N Y) ; 3(10): 100550, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277820

RESUMO

Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight. We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods.

12.
Genes (Basel) ; 13(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36140784

RESUMO

Reducing harmful aggressive behaviour remains a major challenge in pig production. Social network analysis (SNA) showed the potential in providing novel behavioural traits that describe the direct and indirect role of individual pigs in pen-level aggression. Our objectives were to (1) estimate the genetic parameters of these SNA traits, and (2) quantify the genetic associations between the SNA traits and commonly used performance measures: growth, feed intake, feed efficiency, and carcass traits. The animals were video recorded for 24 h post-mixing. The observed fighting behaviour of each animal was used as input for the SNA. A Bayesian approach was performed to estimate the genetic parameters of SNA traits and their association with the performance traits. The heritability estimates for all SNA traits ranged from 0.01 to 0.35. The genetic correlations between SNA and performance traits were non-significant, except for weighted degree with hot carcass weight, and for both betweenness and closeness centrality with test daily gain, final body weight, and hot carcass weight. Our results suggest that SNA traits are amenable for selective breeding. Integrating these traits with other behaviour and performance traits may potentially help in building up future strategies for simultaneously improving welfare and performance in commercial pig farms.


Assuntos
Fenômenos Biológicos , Análise de Rede Social , Animais , Teorema de Bayes , Ingestão de Alimentos/genética , Fenótipo , Suínos/genética
13.
Sci Rep ; 11(1): 23930, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907264

RESUMO

Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.


Assuntos
Adaptação Fisiológica , Exercício Físico , Contração Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Transcriptoma , Adulto , Humanos , Masculino
14.
Stem Cell Reports ; 16(12): 3020-3035, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34767750

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterized by the loss of motor neurons. We utilized single-cell transcriptomics to uncover dysfunctional pathways in degenerating motor neurons differentiated from SOD1 E100G ALS patient-derived induced pluripotent stem cells (iPSCs) and respective isogenic controls. Differential gene expression and network analysis identified activation of developmental pathways and core transcriptional factors driving the ALS motor neuron gene dysregulation. Specifically, we identified activation of SMAD2, a downstream mediator of the transforming growth factor ß (TGF-ß) signaling pathway as a key driver of SOD1 iPSC-derived motor neuron degeneration. Importantly, our analysis indicates that activation of TGFß signaling may be a common mechanism shared between SOD1, FUS, C9ORF72, VCP, and sporadic ALS motor neurons. Our results demonstrate the utility of single-cell transcriptomics in mapping disease-relevant gene regulatory networks driving neurodegeneration in ALS motor neurons. We find that ALS-associated mutant SOD1 targets transcriptional networks that perturb motor neuron homeostasis.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia , Degeneração Neural/genética , Análise de Célula Única , Superóxido Dismutase-1/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
15.
FASEB J ; 35(9): e21830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342902

RESUMO

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.


Assuntos
Proteínas Musculares/genética , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Doenças Musculares/genética , Biossíntese de Proteínas/genética , Transcriptoma/genética , Adulto , Humanos , Masculino , Força Muscular/genética , Adulto Jovem
16.
Front Genet ; 12: 676047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249095

RESUMO

Pig herds in Africa comprise genotypes ranging from local ecotypes to commercial breeds. Many animals are composites of these two types and the best levels of crossbreeding for particular production systems are largely unknown. These pigs are managed without structured breeding programs and inbreeding is potentially limiting. The objective of this study was to quantify ancestry contributions and inbreeding levels in a population of smallholder pigs in Uganda. The study was set in the districts of Hoima and Kamuli in Uganda and involved 422 pigs. Pig hair samples were taken from adult and growing pigs in the framework of a longitudinal study investigating productivity and profitability of smallholder pig production. The samples were genotyped using the porcine GeneSeek Genomic Profiler (GGP) 50K SNP Chip. The SNP data was analyzed to infer breed ancestry and autozygosity of the Uganda pigs. The results showed that exotic breeds (modern European and old British) contributed an average of 22.8% with a range of 2-50% while "local" blood contributed 69.2% (36.9-95.2%) to the ancestry of the pigs. Runs of homozygosity (ROH) greater than 2 megabase (Mb) quantified the average genomic inbreeding coefficient of the pigs as 0.043. The scarcity of long ROH indicated low recent inbreeding. We conclude that the genomic background of the pig population in the study is a mix of old British and modern pig ancestries. Best levels of admixture for smallholder pigs are yet to be determined, by linking genotypes and phenotypic records.

17.
J Cachexia Sarcopenia Muscle ; 12(3): 629-645, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951310

RESUMO

BACKGROUND: Skeletal muscle atrophy manifests across numerous diseases; however, the extent of similarities/differences in causal mechanisms between atrophying conditions in unclear. Ageing and disuse represent two of the most prevalent and costly atrophic conditions, with resistance exercise training (RET) being the most effective lifestyle countermeasure. We employed gene-level and network-level meta-analyses to contrast transcriptomic signatures of disuse and RET, plus young and older RET to establish a consensus on the molecular features of, and therapeutic targets against, muscle atrophy in conditions of high socio-economic relevance. METHODS: Integrated gene-level and network-level meta-analysis was performed on publicly available microarray data sets generated from young (18-35 years) m. vastus lateralis muscle subjected to disuse (unilateral limb immobilization or bed rest) lasting ≥7 days or RET lasting ≥3 weeks, and resistance-trained older (≥60 years) muscle. RESULTS: Disuse and RET displayed predominantly separate transcriptional responses, and transcripts altered across conditions were mostly unidirectional. However, disuse and RET induced directly inverted expression profiles for mitochondrial function and translation regulation genes, with COX4I1, ENDOG, GOT2, MRPL12, and NDUFV2, the central hub components of altered mitochondrial networks, and ZMYND11, a hub gene of altered translation regulation. A substantial number of genes (n = 140) up-regulated post-RET in younger muscle were not similarly up-regulated in older muscle, with young muscle displaying a more pronounced extracellular matrix (ECM) and immune/inflammatory gene expression response. Both young and older muscle exhibited similar RET-induced ubiquitination/RNA processing gene signatures with associated PWP1, PSMB1, and RAF1 hub genes. CONCLUSIONS: Despite limited opposing gene profiles, transcriptional signatures of disuse are not simply the converse of RET. Thus, the mechanisms of unloading cannot be derived from studying muscle loading alone and provides a molecular basis for understanding why RET fails to target all transcriptional features of disuse. Loss of RET-induced ECM mechanotransduction and inflammatory profiles might also contribute to suboptimal ageing muscle adaptations to RET. Disuse and age-dependent molecular candidates further establish a framework for understanding and treating disuse/ageing atrophy.


Assuntos
Treinamento Resistido , Idoso , Humanos , Hipertrofia , Mecanotransdução Celular , Músculo Esquelético , Atrofia Muscular/genética , Transcriptoma
19.
iScience ; 23(12): 101734, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33376968

RESUMO

Deep space exploration is firmly within reach, but health decline during extended spaceflight remains a key challenge. In this study, we performed comparative transcriptomic analysis of Caenorhabditis elegans responses to varying degrees of hypergravity and to two spaceflight experiments (ICE-FIRST and CERISE). We found that progressive hypergravitational load concomitantly increases the extent of differential gene regulation and that subtle changes in ∼1,000 genes are reproducibly observed during spaceflight-induced microgravity. Consequently, we deduce those genes that are concordantly regulated by altered gravity per se or that display inverted expression profiles during hypergravity versus microgravity. Through doing so, we identify several candidate targets with terrestrial roles in neuronal function and/or cellular metabolism, which are linked to regulation by daf-16/FOXO signaling. These data offer a strong foundation from which to expedite mechanistic understanding of spaceflight-induced maladaptation in higher organisms and, ultimately, promote future targeted therapeutic development.

20.
Aging (Albany NY) ; 12(1): 740-755, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910159

RESUMO

Resistance exercise (RE) remains a primary approach for minimising aging muscle decline. Understanding muscle adaptation to individual contractile components of RE (eccentric, concentric) might optimise RE-based intervention strategies. Herein, we employed a network-driven pipeline to identify putative molecular drivers of muscle aging and contraction mode responses. RNA-sequencing data was generated from young (21±1 y) and older (70±1 y) human skeletal muscle before and following acute unilateral concentric and contralateral eccentric contractions. Application of weighted gene co-expression network analysis identified 33 distinct gene clusters ('modules') with an expression profile regulated by aging, contraction and/or linked to muscle strength. These included two contraction 'responsive' modules (related to 'cell adhesion' and 'transcription factor' processes) that also correlated with the magnitude of post-exercise muscle strength decline. Module searches for 'hub' genes and enriched transcription factor binding sites established a refined set of candidate module-regulatory molecules (536 hub genes and 60 transcription factors) as possible contributors to muscle aging and/or contraction responses. Thus, network-driven analysis can identify new molecular candidates of functional relevance to muscle aging and contraction mode adaptations.


Assuntos
Adaptação Fisiológica , Envelhecimento , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional/métodos , Exercício Físico , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Avaliação Geriátrica , Humanos , Masculino , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...