Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988200

RESUMO

Wound closure in surgeries is traditionally achieved using invasive methods such as sutures and staples. Adhesion-based wound closure methods such as tissue adhesives, sealants, and hemostats are slowly replacing these methods due to their ease of application. Although several chemistries have been developed and used commercially for wound closure, there is still a need for better tissue adhesives from the point of view of toxicity, wet-adhesion strength, and long-term bonding. Catechol chemistry has shown great promise in developing wet-set adhesives that meet these criteria. Herein, we have studied the biocompatibility of a catechol-based copolymer adhesive, poly([dopamine methacrylamide]-co-[methyl methacrylate]-co-[poly(ethylene glycol) methyl ether methacrylate]) or poly(catechol-MMA-OEG), which is soluble in water. The adhesive was injected subcutaneously in a mouse model on its own and in combination with a sodium periodate crosslinker. After 72 h, 4 weeks, and 12 weeks, the mice were euthanized and subjected to histopathological analysis. Both adhesives were present and still palpable at the end of 12 weeks. The moderate inflammation observed for the poly(catechol-MMA-OEG) cohort at 72 h had reduced to mild inflammation at the end of 12 weeks. However, the moderate inflammatory response observed for the poly(catechol-MMA-OEG) + crosslinker cohort at 72 h had not subsided at 12 weeks.

2.
Vet Sci ; 8(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809558

RESUMO

The anaerobic bacterium Cutibacterium acnes has been increasingly linked to the development of degenerative disc disease (DDD), although causality is yet to be conclusively proven. To better study how this organism could contribute to the aetiology of DDD, improved animal models that are more reflective of human disc anatomy, biology and mechanical properties are required. Against this background, our proof-of concept study aimed to be the first demonstration that C. acnes could be safely administered percutaneously into sheep intervertebral discs (IVDs) for in vivo study. Following our protocol, two sheep were successfully injected with a strain of C. acnes (8.3 × 106 CFU/disc) previously recovered from a human degenerative disc. No adverse reactions were noted, and at one-month post inoculation all triplicate infected discs in our first animal grew C. acnes, albeit at a reduced load (5.12 × 104 to 6.67 × 104 CFU/disc). At six months, no growth was detected in discs from our second animal indicating bacterial clearance. This pilot study has demonstrated the feasibility of safe percutaneous injection of C. acnes into sheep IVDs under fluoroscopic guidance. The design of follow-up sheep studies to investigate the potential of C. acnes to drive pathological changes within infected discs should now be pursued.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...