Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Pathol (Wilmington) ; 1(2): 60-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585836

RESUMO

Previous studies showed that human cell line HEK293 lacking mitochondrial superoxide dismutase (MnSOD) exhibited decreased succinate dehydrogenase (SDH) activity, and mice lacking MnSOD displayed significant reductions in SDH and aconitase activities. Since MnSOD has significant effects on SDH activity, and succinate is a key regulator of TET enzymes needed for proper differentiation, we hypothesized that SOD2 loss would lead to succinate accumulation, inhibition of TET activity, and impaired erythroid precursor differentiation. To test this hypothesis, we genetically disrupted the SOD2 gene using the CRISPR/Cas9 genetic strategy in a human erythroleukemia cell line (HEL 92.1.7) capable of induced differentiation toward an erythroid phenotype. Cells obtained in this manner displayed significant inhibition of SDH activity and ~10-fold increases in cellular succinate levels compared to their parent cell controls. Furthermore, SOD2 -/- cells exhibited significantly reduced TET enzyme activity concomitant with decreases in genomic 5-hmC and corresponding increases in 5-mC. Finally, when stimulated with δ-aminolevulonic acid (δ-ALA), SOD2 -/- HEL cells failed to properly differentiate toward an erythroid phenotype, likely due to failure to complete the necessary global DNA demethylation program required for erythroid maturation. Together, our findings support the model of an SDH/succinate/TET axis and a role for succinate as a retrograde signaling molecule of mitochondrial origin that significantly perturbs nuclear epigenetic reprogramming and introduce MnSOD as a governor of the SDH/succinate/TET axis.

2.
PLoS One ; 14(3): e0213576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30856230

RESUMO

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) plays a key role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+), which is a vital cofactor in redox reactions and a substrate for NAD+ consuming enzymes including CD38, PARPs and sirtuins. NAMPT over-expression has been shown in various cancers and its inhibition decreases cancer cell growth, making it an attractive therapeutic target. Here we examine the NAMPT expression in a large cohort of resected stage I/II pancreatic ductal adenocarcinomas (PDAs) and correlate its expression with clinical outcomes and pathologic features. METHODS: A retrospective review of patients with PDAs was conducted at a single institution. Tissue microarrays (TMAs) containing primary PDAs and their metastatic lymph nodes (mLNs) were constructed and stained for NAMPT expression. Each TMA core was evaluated for staining intensity of cancer cells (0 = no staining, 1+ = weak, 2+ = moderate, 3+ = strong) and a mean score was calculated for each case with at least two evaluable cores. NAMPT expression was correlated with clinicopathological variables using chi-squared or Fisher's exact test, and t-tests for categorical and continuous variables, respectively. Survival probabilities were estimated and plotted using the Kaplan-Meier method. Cox proportional hazards regression was used to assess the effects of NAMPT staining values on recurrence-free survival (RFS) and overall survival (OS). This study was conducted under an approved IRB protocol. RESULTS: 173 primary PDAs had at least 2 TMA cores with identifiable cancer cells. The mean IHC score was 0.55 (range: 0 to 2.33). The mean IHC score of mLNs was 0.39 (range: 0-2), which was not significantly different from their primary tumors (mean IHC score = 0.47, P = 0.38). Sixty-four percent (111/173) of PDAs were positive for NAMPT staining. Stage II tumors were more likely to be positive (68% of 151 vs 41% of 22; P = 0.01). Non-obese non-diabetic patients were more likely to have NAMPT+ tumors (43.7% vs. 27.9%, P = 0.04). While RFS and OS were not statistically different between NAMPT+ vs. NAMPT- PDAs, patients with NAMPT- tumors tended to have a longer median OS (26.0 vs. 20.4 months, P = 0.34). CONCLUSION: NAMPT expression was detected in 64% of stage I/II PDAs and up to 72% in non-obese non-diabetic patients. Frequency of NAMPT expression correlated with pathological stage, consistent with published literature regarding its role in cancer progression. While RFS and OS were not statistically significantly different, patients with NAMPT+ PDAs tended to have a shorter survival. Thus, NAMPT inhibition may prove beneficial in clinical trials.


Assuntos
Carcinoma Ductal Pancreático/patologia , Citocinas/análise , Nicotinamida Fosforribosiltransferase/análise , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/cirurgia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Ductos Pancreáticos/cirurgia , Neoplasias Pancreáticas/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias Pancreáticas
4.
Cancer Cell ; 31(4): 487-500.e8, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28366679

RESUMO

Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2⋅- and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Feminino , Glioblastoma/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/radioterapia , Masculino , Camundongos Nus , Oxigênio/metabolismo , Radiossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...