Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 31323, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27507433

RESUMO

Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes. We demonstrate that ferroelectric switching is accompanied - without exception - by the appearance of charged domain walls and that these walls can be displaced and erased reliably. We ascertain from a combination of scanning probe microscopy, transmission electron microscopy and phase field simulations that creation of charged domain walls is a by-product of, and as such is always coupled to, ferroelectric switching. This is due to the (110) orientation of the tetragonal (Pb,Sr)TiO3 thin films and the crucial role played by the limited conduction of the LSMO bottom electrode layer used in this study. This work highlights that charged domain walls, far from being exotic, unstable structures, as might have been assumed previously, can be robust, stable easily-controlled features in ferroelectric thin films.

2.
Nat Mater ; 10(10): 753-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21857674

RESUMO

Multiferroic materials possess two or more ferroic orders but have not been exploited in devices owing to the scarcity of room-temperature examples. Those that are ferromagnetic and ferroelectric have potential applications in multi-state data storage if the ferroic orders switch independently, or in electric-field controlled spintronics if the magnetoelectric coupling is strong. Future applications could also exploit toroidal moments and optical effects that arise from the simultaneous breaking of time-reversal and space-inversion symmetries. Here, we use soft X-ray resonant magnetic scattering and piezoresponse force microscopy to reveal that, at the interface with Fe or Co, ultrathin films of the archetypal ferroelectric BaTiO3 simultaneously possess a magnetization and a polarization that are both spontaneous and hysteretic at room temperature. Ab initio calculations of realistic interface structures provide insight into the origin of the induced moments and bring support to this new approach for creating room-temperature multiferroics.

3.
Nanotechnology ; 22(7): 075302, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21233542

RESUMO

We used oxygen ion irradiation to transfer the nanoscale pattern of a porous alumina mask into high-T(C) superconducting thin films. This causes a nanoscale spatial modulation of superconductivity and strongly affects the magneto-transport below T(C), which shows a series of periodic oscillations reminiscent of the Little-Parks effect in superconducting wire networks. This irradiation technique could be extended to other oxide materials in order to induce ordered nanoscale phase segregation.

4.
Science ; 327(5969): 1106-10, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20075211

RESUMO

A current drawback of spintronics is the large power that is usually required for magnetic writing, in contrast with nanoelectronics, which relies on "zero-current," gate-controlled operations. Efforts have been made to control the spin-relaxation rate, the Curie temperature, or the magnetic anisotropy with a gate voltage, but these effects are usually small and volatile. We used ferroelectric tunnel junctions with ferromagnetic electrodes to demonstrate local, large, and nonvolatile control of carrier spin polarization by electrically switching ferroelectric polarization. Our results represent a giant type of interfacial magnetoelectric coupling and suggest a low-power approach for spin-based information control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...