Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(6): e202317699, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168073

RESUMO

In an effort to synthesize chemically recyclable thermoplastic elastomers, a redox-switchable catalytic system was developed to synthesize triblock copolymers containing stiff poly(lactic acid) (PLA) end blocks and a flexible poly(tetrahydrofuran-co-cyclohexene oxide) (poly(THF-co-CHO) copolymer as the mid-block. The orthogonal reactivity induced by changing the oxidation state of the iron-based catalyst enabled the synthesis of the triblock copolymers in a single reaction flask from a mixture of monomers. The triblock copolymers demonstrated improved flexibility compared to poly(l-lactic acid) (PLLA) and thermomechanical properties that resemble thermoplastic elastomers, including a rubbery plateau in the range of -60 to 40 °C. The triblock copolymers containing a higher percentage of THF versus CHO were more flexible, and a blend of triblock copolymers containing PLLA and poly(d-lactic acid) (PDLA) end-blocks resulted in a stereocomplex that further increased polymer flexibility. Besides the low cost of lactide and THF, the sustainability of this new class of triblock copolymers was also supported by their depolymerization, which was achieved by exposing the copolymers sequentially to FeCl3 and ZnCl2 /PEG under reactive distillation conditions.

2.
J Am Chem Soc ; 145(32): 18007-18014, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540785

RESUMO

Achromatic quarter waveplates (A-QWPs), traditionally constructed from multiple birefringent crystals, can modulate light polarization and retardation across a broad range of wavelengths. This mechanism is inherently related to phase retardation controlled by the fast and slow axis of stacked multi-birefringent crystals. However, the conventional design of A-QWPs requires the incorporation of multiple birefringent crystals, which complicates the manufacturing process and raises costs. Here, we report the discovery of a broadband (540-1060 nm) A-QWP based on a two-dimensional (2D) layered hybrid copper halide (HCH) perovskite single crystal. The 2D copper chloride (CuCl6) layers of the HCH crystal undergo Jahn-Teller distortion and subsequently trigger the in-plane optical birefringence. Its broad range of the wavelength response as an A-QWP is a consequence of the out-of-plane mosaicity formed among the stacked inorganic layers during the single-crystal self-assembly process in the solution phase. Given the versatility of 2D hybridhalide perovskites, the 2D HCH crystal offers a promising approach for designing cost-effective A-QWPs and the ability to integrate other optical devices.

3.
Soft Matter ; 18(40): 7762-7772, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36205260

RESUMO

Quantitative analysis of particle size and size distribution is crucial in establishing structure-property relationships of composite materials. An emerging soft composite architecture involves dispersing droplets of liquid metal throughout an elastomer, enabling synergistic properties of metals and soft polymers. The structure of these materials is typically characterized through real-space microscopy and image analysis; however, these techniques rely on magnified images that may not represent the global-averaged size and distribution of the droplets. In this study, we utilize ultra-small angle X-ray scattering (USAXS) as a reciprocal-space characterization technique that yields global-averaged dimensions of eutectic gallium indium (EGaIn) alloy soft composites. The Unified fit and Monte Carlo scattering methods are applied to determine the particle size and size distributions of the liquid metal droplets in the composites and are shown to be in excellent agreement with results from real-space image analysis. Additionally, all methods indicate that the droplets are getting larger as they are introduced into composites, suggesting that the droplets are agglomerating or possibly coalescing during dispersion. This work demonstrates the viability of X-ray scattering to elucidate structural information about liquid metal droplets for material development for applications in soft robotics, soft electronics, and multifunctional materials.

4.
ACS Sens ; 5(6): 1541-1547, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32475110

RESUMO

Azo dyes are ubiquitous pollutants that contaminate water supplies and threaten human, biota, and ecosystem health. Their detection and discrimination are a considerable challenge owing to the numerous structural, chemical, and optical similarities between dyes, complexity of the wastewater in which they are found, and low environmental concentrations. Here, we demonstrate that the inner filter effect (IFE), in combination with conjugated polymer array-based sensing, offers a rapid approach for the quantitative profiling of these pollutants. The array was constructed using three anionic conjugated polyelectrolytes whose varying spectroscopic properties led to distinct IFE patterns in the presence of various dyes. These unique fluorescence response patterns were identified and processed using linear discriminant analysis (LDA), enabling the individual identification of 12 closely related azo dyes. To demonstrate the potential for utility in the environment, the array was used to differentiate between these dyes at nanomolar concentrations in water.


Assuntos
Compostos Azo , Água , Corantes , Ecossistema , Humanos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...