Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37371321

RESUMO

Alzheimer's disease (AD) is characterized by the buildup of plaques and tangles in the brain. Tangles are formed when the stabilizing protein, tau, becomes hyperphosphorylated and clumps together. There are limited treatments for AD; therefore, the exploration of new treatments is warranted. Previous research showed that plasma transfusion from young donor mice improved spatial memory and increased synaptic proteins in old transgenic APP/PS1 mice, suggesting a remediation of memory and synaptic function. In the current study, plasma was transfused from 2-3-month-old young wildtype mice (WT) to 8-month-old rTg4510 mice expressing human tau (Tau). One week after the transfusions, behavior and tau pathology were examined. We found that Tau mice injected with plasma had lower expression of phosphorylated tau (ptau) in the brain, accompanied by fewer tau tangles in the cortex and CA1 region of the hippocampus and smaller tau tangles in the cortex, when compared to Tau mice injected with saline. Despite no improvement in behavior, the decreased level of ptau and tangles open the door to future studies involving plasma transfusions.

2.
J Alzheimers Dis ; 64(2): 617-630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29914030

RESUMO

Hyperphosphorylated tau protein is a key pathology in Alzheimer's disease (AD), frontotemporal dementia, chronic traumatic encephalopathy, and Parkinson's disease. The essential trace element zinc exacerbates tauopathy in vitro as well as in a Drosophila model of AD. However, the interaction has never been assessed behaviorally or biochemically in mammals. Zinc supplementation is prevalent in society, finding use as a treatment for macular degeneration and cataracts, and is also taken as an immune system booster with high levels appearing in multivitamins marketed toward the elderly. Using a transgenic mouse model that contains the human gene for tau protein (P301L), we assessed the effects of excess chronic zinc supplementation on tau pathology. Behavioral tests included nest building, circadian rhythm, Morris Water Maze, fear conditioning, and open field. Biochemically, total tau and Ser396 phosphorylation were assessed using western blot. Number of tangles were assessed by Thioflavin-S and free zinc levels were assessed by Zinpyr-1. Tau mice demonstrated behavioral deficits compared to control mice. Zinc supplementation exacerbated tauopathic deficits in circadian rhythm, nesting behavior, and Morris Water Maze. Biochemically, zinc-supplemented tau mice showed increased phosphorylation at pSer396. Zinc supplementation in tau mice also increased tangle numbers in the hippocampus while decreasing free-zinc levels, demonstrating that tangles were sequestering zinc. These results show that zinc intensified the deficits in behavior and biochemistry caused by tau.


Assuntos
Tauopatias/induzido quimicamente , Tauopatias/genética , Zinco/toxicidade , Proteínas tau/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Feminino , Fluoresceínas/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Comportamento de Nidação/efeitos dos fármacos , Tauopatias/fisiopatologia , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...