Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1094241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866335

RESUMO

Introduction: Because of the steady increase in the use of synthetic opioids in women of childbearing age, a large number of children are at risk of exposure to these drugs prenatally or postnatally through breast milk. While there is older literature looking at the effects of morphine and heroin, there are relatively few studies looking at the long-term effects of high-potency synthetic opioid compounds like fentanyl. Thus, in the present study, we assessed whether brief exposure to fentanyl in male and female rat pups during a period roughly equivalent to the third trimester of CNS development altered adolescent oral fentanyl self-administration and opioid-mediated thermal antinociception. Methods: We treated the rats with fentanyl (0, 10, or 100 µg/kg sc) from postnatal day (PD) 4 to PD 9. The fentanyl was administered daily in two injections given 6 h apart. After the last injection on PD 9, the rat pups were left alone until either PD 40 where they began fentanyl self-administration training or PD 60 where they were tested for morphine- (0, 1.25, 2.5, 5, or 10 mg/kg) or U50,488- (0, 2.5, 5, 10, or 20 mg/kg) induced thermal antinociception. Results: In the self-administration study, we found that female rats had more active nose pokes than male rats when receiving a fentanyl reward but not sucrose alone solution. Early neonatal fentanyl exposure did not significantly alter fentanyl intake or nose-poke response. In contrast, early fentanyl exposure did alter thermal antinociception in both male and female rats. Specifically, fentanyl (10 µg/kg) pre-treatment increased baseline paw-lick latencies, and the higher dose of fentanyl (100 µg/kg) reduced morphine-induced paw-lick latencies. Fentanyl pre-treatment did not alter U50,488-mediated thermal antinociception. Conclusions: Although our exposure model is not reflective of typical human fentanyl use during pregnancy, our study does illustrate that even brief exposure to fentanyl during early development can have long-lasting effects on mu-opioid-mediated behavior. Moreover, our data suggest that females may be more susceptible to fentanyl abuse than males.

2.
Eur J Pharmacol ; 926: 175019, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35561752

RESUMO

Serotonin 5-HT1A receptor agonists increase locomotor activity of both preweanling and adult rodents. The part played by the 5-HT1B receptor in locomotion is less certain, with preliminary evidence suggesting that the actions of 5-HT1B receptor agonists are not uniform across ontogeny. To more fully examine the role of 5-HT1B receptors, locomotor activity and axillary temperatures of preweanling and adult male and female rats was assessed. In the first experiment, adult (PD 70) and preweanling (PD 10 and PD 15) male and female rats were injected with the 5-HT1B agonist CP 94253 (2.5-10 mg/kg) immediately before locomotor activity testing and 60 min before axillary temperatures were recorded. In the second experiment, specificity of drug action was determined in PD 10 rats by administering saline, WAY 100635 (a 5-HT1A antagonist), or GR 127935 (a 5-HT1B antagonist) 30 min before CP 94253 (10 mg/kg) treatment. CP 94253 significantly increased the locomotor activity of preweanling rats on PD 10, an effect that was fully attenuated by GR 127935. Conversely, CP 94253 significantly decreased the locomotor activity of male and female adult rats, while CP 94253 did not affect the locomotor activity of PD 15 rats. Regardless of age, CP 94253 (2.5-10 mg/kg) significantly reduced the axillary temperatures of preweanling and adult rats. When considered together, these results show that 5-HT1B receptor stimulation activates motor circuits in PD 10 rats; whereas, 5-HT1B receptor agonism reduces the overall locomotor activity of adult rats, perhaps by blunting exploratory tendencies.


Assuntos
Agonistas do Receptor de Serotonina , Serotonina , Animais , Temperatura Corporal , Feminino , Locomoção , Masculino , Atividade Motora , Piridinas , Ratos , Receptor 5-HT1B de Serotonina , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
3.
Drug Alcohol Depend ; 209: 107927, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32106019

RESUMO

BACKGROUND: Adolescent nicotine exposure increases methamphetamine (MA) intake in adult male rats; however, little is known about how nicotine affects MA self-administration during the adolescent period. Therefore, we assessed whether exposing rats to nicotine during early or late adolescence affects oral MA self-administration. METHODS: 146 male and female rats were treated with saline or nicotine (0.16 or 0.64 mg/kg) from postnatal day (PD) 25-PD 34 (the early exposure phase) and/or PD 35-PD 55 (the late exposure phase). Rats began an oral MA self-administration procedure on PD 35. RESULTS: Only the sex variable, but not nicotine, affected sucrose and MA acquisition, as female rats had more nose pokes than males during training. On the test sessions, female rats exposed to nicotine (0.64 mg/kg) in the early exposure phase had more active nose pokes than saline-treated female rats or nicotine-treated male rats. Rats exposed to nicotine (0.16 mg/kg) in the late exposure phase had fewer active nose pokes during testing than rats exposed to saline. Nose poke responding during extinction was not altered by nicotine exposure, but administering nicotine (0.16 or 0.64 mg/kg) to male rats in the early exposure phase did decrease nose pokes during the drug-primed reinstatement session. CONCLUSIONS: Our results show that adolescent female rats are more sensitive to the reinforcing effects of oral sucrose and MA than adolescent males, and that preadolescent nicotine exposure enhances oral MA self-administration in female rats. These findings suggest that preteen nicotine use may increase vulnerability to later MA abuse in teenage girls.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Metanfetamina/administração & dosagem , Nicotina/administração & dosagem , Administração Oral , Fatores Etários , Transtornos Relacionados ao Uso de Anfetaminas/psicologia , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/fisiologia , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Autoadministração , Sacarose/administração & dosagem
4.
Behav Brain Res ; 379: 112267, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31593789

RESUMO

Ketamine significantly increases the locomotor activity of rodents, however this effect varies according to the sex and age of the animal being tested. To determine the role monoamine systems play in ketamine's locomotor activating effects: (a) male and female preweanling, adolescent, and adult rats were pretreated with vehicle or the monoamine depleting agent reserpine (1 or 5 mg/kg), and (b) the behavioral actions of ketamine (20 or 40 mg/kg) were then compared to d-amphetamine (2 mg/kg) and cocaine (10 or 15 mg/kg). The ability of reserpine to deplete dorsal striatal dopamine (DA) and serotonin (5-HT) in male and female rats was determined using HPLC. Ketamine caused substantial increases in the locomotion of preweanling rats and older female rats (adolescents and adults), but had only small stimulatory effects on adolescent and adult male rats. When compared to cocaine and d-amphetamine, ketamine was especially sensitive to the locomotor-inhibiting effects of monoamine depletion. Ketamine-induced locomotion is at least partially mediated by monoamine systems, since depleting DA and 5-HT levels by 87-96% significantly attenuated the locomotor activating effects of ketamine in male and female rats from all three age groups. When administered to reserpine-pretreated rats, ketamine produced a different pattern of behavioral effects than either psychostimulant, suggesting that ketamine does not stimulate locomotor activity via actions at the presynaptic terminal. Instead, our results are consistent with the hypothesis that ketamine increases locomotor activity through a down-stream mechanism, possibly involving ascending DA and/or 5-HT projection neurons.


Assuntos
Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Fatores Etários , Animais , Cocaína/farmacologia , Dextroanfetamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Interações Medicamentosas , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Ketamina/administração & dosagem , Masculino , Inibidores da Captação de Neurotransmissores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Reserpina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Caracteres Sexuais
5.
Behav Brain Res ; 379: 112302, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31655095

RESUMO

The pattern of ketamine-induced locomotor activity varies substantially across ontogeny and according to sex. Although ketamine is classified as an NMDA channel blocker, it appears to stimulate the locomotor activity of both male and female rats via a monoaminergic mechanism. To more precisely determine the neural mechanisms underlying ketamine's actions, male and female preweanling and adolescent rats were pretreated with vehicle, the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA). After completion of the pretreatment regimen, the locomotor activating effects of saline, ketamine, d-amphetamine, and cocaine were assessed during a 2 h test session. In addition, the ability of AMPT and PCPA to reduce dorsal striatal DA and 5-HT content was measured in male and female preweanling, adolescent, and adult rats. Results showed that AMPT and PCPA reduced, but did not fully attenuate, the ketamine-induced locomotor activity of preweanling rats and female adolescent rats. Ketamine (20 and 40 mg/kg) caused a minimal amount of locomotor activity in male adolescent rats, and this effect was not significantly modified by AMPT or PCPA pretreatment. When compared to ketamine, d-amphetamine and cocaine produced different patterns of locomotor activity across ontogeny; moreover, AMPT and PCPA pretreatment affected psychostimulant- and ketamine-induced locomotion differently. When these results are considered together, it appears that both dopaminergic and serotonergic mechanisms mediate the ketamine-induced locomotor activity of preweanling and female adolescent rats. The dichotomous actions of ketamine relative to the psychostimulants in vehicle-, AMPT-, and PCPA-treated rats, suggests that ketamine modulates DA and 5-HT neurotransmission through an indirect mechanism.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Dextroanfetamina/farmacologia , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fenclonina/análogos & derivados , Ketamina/farmacologia , Locomoção/efeitos dos fármacos , Serotoninérgicos/farmacologia , alfa-Metiltirosina/farmacologia , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Dextroanfetamina/administração & dosagem , Dopaminérgicos/administração & dosagem , Interações Medicamentosas , Inibidores Enzimáticos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Fenclonina/administração & dosagem , Fenclonina/farmacologia , Ketamina/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Serotoninérgicos/administração & dosagem , alfa-Metiltirosina/administração & dosagem
6.
J Neurosci Res ; 97(12): 1546-1558, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31304635

RESUMO

N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which irreversibly inactivates dopamine (DA) receptors, causes pronounced age-dependent behavioral effects in rats. For example, EEDQ either augments or does not affect the DA agonist-induced locomotor activity of preweanling rats while attenuating the locomotion of adolescent and adult rats. The twofold purpose of this study was to determine whether EEDQ would: (a) potentiate or attenuate the cocaine-induced locomotor activity of preweanling, adolescent, and adult rats; and (b) alter the sensitivity of surviving D2 receptors. Rats were treated with vehicle or EEDQ (2.5 or 7.5 mg/kg) on postnatal day (PD) 17, PD 39, and PD 84. In the behavioral experiments, saline- or cocaine-induced locomotion was assessed 24 hr later. In the biochemical experiments, dorsal striatal samples were taken 24 hr after vehicle or EEDQ treatment and later assayed for NPA-stimulated GTPγS receptor binding, G protein-coupled receptor kinase 6 (GRK6), and ß-arrestin-2 (ARRB2). GTPγS binding is a direct measure of ligand-induced G protein activation, while GRK6 and ARRB2 modulate the internalization and desensitization of D2 receptors. Results showed that EEDQ potentiated the locomotor activity of preweanling rats, while attenuating the locomotion of older rats. NPA-stimulated GTPγS binding was elevated in EEDQ-treated preweanling rats, relative to adults, indicating enhanced functional coupling between the G protein and receptor. EEDQ also reduced ARRB2 levels in all age groups, which is indicative of increased D2 receptor sensitivity. In sum, the present results support the hypothesis that D2 receptor supersensitivity is a critical factor mediating the locomotor potentiating effects of EEDQ in cocaine-treated preweanling rats.


Assuntos
Envelhecimento/fisiologia , Cocaína/administração & dosagem , Corpo Estriado/fisiologia , Locomoção/fisiologia , Receptores de Dopamina D2/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corpo Estriado/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Locomoção/efeitos dos fármacos , Masculino , Quinolinas/administração & dosagem , Ratos Sprague-Dawley , Receptores de Dopamina D2/administração & dosagem
7.
Brain Res ; 1719: 24-29, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128097

RESUMO

Sensory processing abnormalities are consistently associated with autism, but the underlying mechanisms and treatment options are unclear. Fragile X Syndrome (FXS) is the leading known genetic cause of intellectual disabilities and autism. One debilitating symptom of FXS is hypersensitivity to sensory stimuli. Sensory hypersensitivity is seen in both humans with FXS and FXS mouse model, the Fmr1 knock out (Fmr1 KO) mouse. Abnormal sensorimotor gating may play a role in the hypersensitivity to sensory stimuli. Humans with FXS and Fmr1 KO mice show abnormalities in acoustic startle response (ASR) and prepulse inhibition (PPI) of startle, responses commonly used to quantify sensorimotor gating. Recent studies have suggested high levels of matrix metalloproteinase-9 (MMP-9) as a potential mechanism of sensory abnormalities in FXS. Here we tested the hypothesis that genetic reduction of MMP-9 in Fmr1 KO mice rescues ASR and PPI phenotypes in adult Fmr1 KO mice. We measured MMP-9 levels in the inferior colliculus (IC), an integral region of the PPI circuit, of WT and Fmr1 KO mice at P7, P12, P18, and P40. MMP-9 levels were higher in the IC of Fmr1 KO mice during early development (P7, P12), but not in adults. We compared ASR and PPI responses in young (P23-25) and adult (P50-80) Fmr1 KO mice to their age-matched wildtype (WT) controls. We found that both ASR and PPI were reduced in the young Fmr1 KO mice compared to age-matched WT mice. There was no genotype difference for ASR in the adult mice, but PPI was significantly reduced in the adult Fmr1 KO mice. The adult mouse data are similar to those observed in humans with FXS. Genetic reduction of MMP-9 in the Fmr1 KO mice resulted in a rescue of adult PPI responses to WT levels. Taken together, these results show sensorimotor gating abnormalities in Fmr1 KO mice, and suggest the potential for MMP-9 regulation as a therapeutic target to reduce sensory hypersensitivity.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Metaloproteinase 9 da Matriz/genética , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/genética , Estimulação Acústica/métodos , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Genótipo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , Inibição Pré-Pulso/genética , Filtro Sensorial/genética
8.
Eur Neuropsychopharmacol ; 29(6): 740-755, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981586

RESUMO

Although ketamine has long been known to increase locomotor activity, only recently was it realized that this behavioral effect varies according to both sex and age. The purpose of the present study was threefold: first, to measure the locomotor activating effects of ketamine in male and female rats across early ontogeny and into adulthood; second, to assess ketamine and norketamine pharmacokinetics in the dorsal striatum and hippocampus of the same age groups; and, third, to use curvilinear regression to determine the relationship between locomotor activity and dorsal striatal concentrations of ketamine and norketamine. A high dose of ketamine (80 mg/kg, i.p.) was administered in order to examine the complete cycle of locomotor responsiveness across a 280-min testing session. In separate groups of rats, the dorsal striata and hippocampi were removed at 10 time points (0-360 min) after ketamine administration and samples were assayed for ketamine, norketamine, and dopamine using HPLC. In female rats, ketamine produced high levels of locomotor activity that varied only slightly among age groups. Male preweanling rats responded like females, but adolescent and adult male rats exhibited lesser amounts of ketamine-induced locomotor activity. Ketamine and norketamine pharmacokinetics, especially peak values and area under the curve, generally mirrored age- and sex-dependent differences in locomotor activity. Among male rats and younger female rats, dorsal striatal ketamine and norketamine levels accounted for a large proportion of the variance in locomotor activity. In adult female rats, however, an additional factor, perhaps involving other ketamine and norketamine metabolites, was influencing locomotor activity.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Ketamina/farmacologia , Ketamina/farmacocinética , Locomoção/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/psicologia , Animais , Animais Recém-Nascidos , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Ketamina/análogos & derivados , Ketamina/metabolismo , Masculino , Neostriado/metabolismo , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais
9.
J Pharmacol Exp Ther ; 366(3): 519-526, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29921706

RESUMO

Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.


Assuntos
Transtornos Mentais/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Comportamento , Humanos
10.
Psychopharmacology (Berl) ; 235(7): 1967-1980, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671013

RESUMO

RATIONALE: Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2High receptors, receptor coupling, etc.). OBJECTIVE: The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. METHODS: Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. RESULTS: When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. CONCLUSIONS: Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.


Assuntos
Cocaína/farmacocinética , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacocinética , Atividade Motora/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Corpo Estriado/metabolismo , Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/fisiologia
11.
Behav Brain Res ; 326: 226-236, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28284952

RESUMO

The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization.


Assuntos
Comportamento Animal/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Cocaína/farmacologia , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Neostriado/efeitos dos fármacos , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Fatores Etários , Animais , Benzazepinas/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Feminino , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Racloprida/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/antagonistas & inibidores
12.
Psychopharmacology (Berl) ; 232(19): 3515-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26141193

RESUMO

RATIONALE: The SSRI antidepressant fluoxetine is one of the few drugs that is effective at treating depression in adolescent humans. In contrast, the SSRI paroxetine has limited efficacy and is more at risk for inducing suicidal behavior. OBJECTIVE: The purpose of the present study was to more fully characterize the differential actions of paroxetine and fluoxetine. METHODS: In experiment 1, male and female rats were injected with paroxetine (2.5 or 10 mg/kg), fluoxetine (10 mg/kg), or vehicle for 10 days starting on postnatal day (PD) 35, and affective behaviors were assessed using sucrose preference and elevated plus maze tasks. A separate set of rats were used to examine monoamine levels. In experiment 2, rats were injected with paroxetine (2.5, 5, or 10 mg/kg), fluoxetine (5, 10, or 20 mg/kg), or vehicle during the same time frame as experiment 1, and anxiety-like behaviors were measured using elevated plus maze, light/dark box, and acoustic startle. RESULTS: Repeated SSRI treatment failed to alter sucrose preference, although both paroxetine and fluoxetine reduced time spent in the open arms of the elevated plus maze and light compartment of the light/dark box. Paroxetine, but not fluoxetine, enhanced acoustic startle and interfered with habituation. Serotonin turnover was decreased by both acute and repeated fluoxetine treatment but unaltered by paroxetine administration. DISCUSSION: These results show that repeated treatment with paroxetine and fluoxetine has dissociable actions in adolescent rats. In particular, paroxetine, but not fluoxetine, increases acoustic startle at low doses and may increase sensitivity to environmental stressors.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/psicologia , Fluoxetina/administração & dosagem , Paroxetina/administração & dosagem , Fatores Etários , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Esquema de Medicação , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/psicologia , Ratos , Ratos Sprague-Dawley , Filtro Sensorial/efeitos dos fármacos , Resultado do Tratamento
13.
Psychopharmacology (Berl) ; 232(13): 2287-301, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25589144

RESUMO

RATIONALE: Responsiveness to acute psychostimulant administration varies across ontogeny. OBJECTIVE: The purpose of the present study was to determine if age-dependent changes in D2(High) receptors may be responsible for the ontogeny of cocaine sensitivity in preweanling, adolescent, and adult rats. METHODS: [(3)H]-Domperidone/dopamine competition assays were used to determine ontogenetic changes in the proportion of D2(High) receptors in male and female preweanling [postnatal day (PD) 5, 10, 15, and 20], adolescent (PD 40), and adult (PD 80) rats. In the behavioral experiment, responsiveness to cocaine (2.5, 5, 10, or 20 mg/kg) was assessed on PD 20, PD 40, and PD 80 for 60 min. Male and female rats were habituated to the apparatus on the 2 days prior to testing. Distance traveled data were presented both untransformed and as percent of saline controls. RESULTS: Male and female preweanling rats (PD 5-PD 20) had a significantly greater percentage of dorsal striatal D2(High) receptors than adolescent or adult rats. Likewise, preweanling rats (PD 20) were more sensitive to the behavioral effects of cocaine than the two older age groups. Adolescent and adult rats responded in a generally similar manner; however, analysis of the untransformed locomotor activity data suggested that adolescent rats were hyporesponsive to 2.5 and 20 mg/kg cocaine when compared to adults. CONCLUSIONS: Data from the present study are consistent with the hypothesis that ontogenetic changes in D2(High) receptors are responsible for age-dependent differences in psychostimulant sensitivity.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Estimulantes do Sistema Nervoso Central/farmacologia , Domperidona/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
14.
Drug Alcohol Depend ; 142: 341-4, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25042760

RESUMO

BACKGROUND: Nicotine is commonly abused in adolescence and is believed to be a "gateway" to other drugs of abuse [e.g., methamphetamine (METH)]. The relationship between early nicotine exposure and later METH use is complicated because the majority of juvenile smokers continue to use cigarettes into adulthood. Thus, the present investigation examined the individual and combined contribution of adolescent and adult nicotine exposure on METH self-administration. METHODS: Forty-three male rats were pretreated with saline or nicotine (0.16 or 0.64 mg/kg, SC) from postnatal day (PD) 35-50. On PD 51, subjects were split into the following groups: SAL-SAL, 0.16-0.16, 0.16-SAL, 0.64-0.64, and 0.64-SAL. Rats were then trained to lever press for METH (0.05 mg/kg) for seven days on an FR1 and seven days on an FR3 reinforcement schedule. After acquisition training, rats underwent 14 days of extinction and were then tested for METH-induced primed reinstatement (1.0mg/kg, IP). RESULTS: Data showed that rats receiving continuous injections of the low dose of nicotine (0.16-0.16) obtained more METH infusions versus the control group (SAL-SAL) on an FR1 and FR3 schedule. In addition, rats on the FR3 schedule that received a low dose of nicotine during the adolescent period only (0.16-SAL) had more METH intake than the control group (SAL-SAL). Interestingly, the high dose of nicotine exposure had no effect on METH intake and neither nicotine dose altered METH seeking behavior. CONCLUSIONS: Low dose exposure to nicotine during adolescence enhances the reinforcing effects of METH, while heavier exposure has no effect on METH intake.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Metanfetamina/administração & dosagem , Nicotina/administração & dosagem , Animais , Extinção Psicológica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração
15.
Psychopharmacology (Berl) ; 231(4): 651-62, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24057816

RESUMO

RATIONALE: Inactivating dopamine (DA) receptors in the caudate-putamen (CPu) attenuates basal and DA agonist-induced behaviors of adult rats while paradoxically increasing the locomotor activity of preweanling rats. OBJECTIVE: The purpose of this study was to determine (a) whether D1 or D2 receptor inactivation is responsible for the elevated locomotion shown by preweanling rats and (b) whether DA receptor inactivation produces a general state in which any locomotor-activating drug will cause a potentiated behavioral response. METHODS: Dimethyl sulfoxide (DMSO) or N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was bilaterally infused into the CPu on postnatal day (PD) 17. In experiment 1, DA receptors were selectively protected from EEDQ-induced alkylation by pretreating rats with D1 and/or D2 antagonists. On PD 18, rats received bilateral microinjections of the DA agonist R(-)-propylnorapomorphine into the dorsal CPu, and locomotor activity was measured for 40 min. In subsequent experiments, the locomotion of DMSO- and EEDQ-pretreated rats was assessed after intraCPu infusions of the selective DA agonists SKF82958 and quinpirole, the partial agonist terguride, or after systemic administration of nonDAergic compounds. RESULTS: Experiment 1 showed that EEDQ's ability to enhance the locomotor activity of preweanling rats was primarily due to the inactivation of D2 receptors. Consistent with this finding, only drugs that directly or indirectly stimulated D2 receptors produced a potentiated locomotor response in EEDQ-treated rats. CONCLUSIONS: These results show that DA receptor inactivation causes dramatically different behavioral effects in preweanling and adult rats, thus providing additional evidence that the D2 receptor system is not functionally mature by the end of the preweanling period.


Assuntos
Núcleo Caudado/metabolismo , Putamen/metabolismo , Receptores de Dopamina D2/metabolismo , Envelhecimento , Alquilantes/farmacologia , Animais , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Benzazepinas/farmacologia , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/crescimento & desenvolvimento , Dimetil Sulfóxido/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Feminino , Lisurida/análogos & derivados , Lisurida/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Putamen/efeitos dos fármacos , Putamen/crescimento & desenvolvimento , Quinolinas/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Desmame
16.
Psychopharmacology (Berl) ; 231(8): 1637-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24287603

RESUMO

RATIONALE: Dopamine (DA) receptor inactivation produces opposing behavioral effects across ontogeny. For example, inactivating DA receptors in the dorsal striatum attenuates DA agonist-induced behaviors of adult rats, while potentiating the locomotor activity of preweanling rats. OBJECTIVE: The purpose of this study was to determine if DA receptor inactivation potentiates the DA agonist-induced locomotor activity of adolescent rats and whether alterations in D2(High) receptors are responsible for this effect. METHODS: In the behavioral experiment, the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) or its vehicle (100 % dimethyl sulfoxide, DMSO) was bilaterally infused into the dorsal striatum on postnatal day (PD) 39. On PD 40, adolescent rats were given intrastriatal infusions of the DA agonist R(-)-propylnorapomorphine (NPA) or vehicle and locomotor activity was measured for 40 min. In the receptor binding experiment, rats received IP injections of EEDQ or DMSO (1:1 (v/v) in distilled water) on PD 17, PD 39, or PD 84. One day later, striatal samples were taken and subsequently assayed for D2-specific binding and D2(High) receptors using [(3)H]-domperidone. RESULTS: Unlike what is observed during the preweanling period, EEDQ attenuated the NPA-induced locomotor activity of adolescent rats. EEDQ reduced D2 receptor levels in the dorsal striatum of all age groups while increasing the proportion of D2(High) receptors. Regardless of pretreatment condition (i.e., DMSO or EEDQ), preweanling rats had a greater percentage of D2(High) receptors than adolescent or adult rats. CONCLUSIONS: DA receptor inactivation affects the behaviors of preweanling and older rats differently. The DA supersensitivity exhibited by EEDQ-treated preweanling rats may result from an excess of D2(High) receptors.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/crescimento & desenvolvimento , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores de Dopamina D2/metabolismo , Animais , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Autorradiografia , Corpo Estriado/fisiologia , Domperidona/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Masculino , Quinolinas/farmacologia , Ratos , Receptores de Dopamina D2/agonistas , Caracteres Sexuais , Trítio
17.
J Psychopharmacol ; 28(4): 376-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24045880

RESUMO

Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10-20. After 1, 4, or 8 days (i.e. on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least 8 days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side effects, including extrapyramidal symptoms.


Assuntos
Antipsicóticos/farmacologia , Dopamina/metabolismo , Piperazinas/farmacologia , Quinolonas/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Fatores Etários , Animais , Antipsicóticos/administração & dosagem , Aripiprazol , Sítios de Ligação/efeitos dos fármacos , Dextroanfetamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Haloperidol/farmacologia , Masculino , Piperazinas/administração & dosagem , Quinolonas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
18.
Eur J Pharmacol ; 706(1-3): 4-10, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23458069

RESUMO

Administering manganese chloride (Mn) to rats on postnatal day (PD) 1-21 causes long-term reductions in dopamine transporter levels in the dorsal striatum, as well as a persistent increase in D1 and D2 receptor concentrations. Whether dopamine autoreceptors change in number or sensitivity is uncertain, although D2S receptors, which may be presynaptic in origin, are elevated in Mn-exposed rats. The purpose of this study was to determine if early Mn exposure causes long-term changes in dopamine autoreceptor sensitivity that persist into adolescence and adulthood. To this end, male rats were exposed to Mn on PD 1-21 and autoreceptor functioning was tested 7 or 70 days later by measuring (a) dopamine synthesis (i.e., DOPA accumulation) in the dorsal striatum after quinpirole or haloperidol treatment and (b) behavioral responsiveness after low-dose apomorphine treatment. Results showed that low doses (i.e., "autoreceptor" doses) of apomorphine (0.06 and 0.12 mg/kg) decreased the locomotor activity of adolescent and adult rats, while higher doses increased locomotion. The dopamine synthesis experiment also produced classic autoreceptor effects, because quinpirole decreased dorsal striatal DOPA accumulation; whereas, haloperidol increased DOPA levels in control rats, but not in rats given the nerve impulse inhibitor γ-butyrolactone. Importantly, early Mn exposure did not alter autoreceptor sensitivity when assessed in early adolescence or adulthood. The lack of Mn-induced effects was evident in both the dopamine synthesis and behavioral experiments. When considered together with past studies, it is clear that early Mn exposure alters the functioning of various dopaminergic presynaptic mechanisms, while dopamine autoreceptors remain unimpaired.


Assuntos
Autorreceptores/fisiologia , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Manganês/farmacologia , Receptores Dopaminérgicos/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Apomorfina/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Haloperidol/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Behav Brain Res ; 246: 29-35, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23466690

RESUMO

Early treatment with methylphenidate has a persistent effect on the affective (i.e., anxiety- and depressive-like) behaviors of adult rats and mice. Interestingly, age at methylphenidate exposure appears to be a critical determinant influencing the expression of affective behaviors. In the present study, we exposed rats to methylphenidate during the preweanling period (i.e., PD 11-PD 20) because this ontogenetic period is analogous to early childhood in humans (an age associated with increasing methylphenidate usage). Rats were injected with methylphenidate (0, 2, or 5mg/kg) from PD 11 to PD 20 and reactivity to rewarding and aversive stimuli were measured in early adulthood. Specifically, novelty-induced CPP, sucrose preference, and elevated plus maze behavior were assessed on PD 60. Early treatment with 2 or 5mg/kg methylphenidate increased total time spent in the white compartment of the CPP chamber. This methylphenidate-induced effect occurred regardless of exposure condition. Performance on the elevated plus maze was also impacted by early methylphenidate exposure, because rats treated with 5mg/kg methylphenidate spent more time in the closed compartment of the elevated plus maze than vehicle controls. Early methylphenidate exposure did not alter sucrose preference. These data indicate that exposing rats to methylphenidate during the preweanling period differentially affects anxiety-like behavior depending on the type of anxiety-provoking stimulus. Specifically, early methylphenidate exposure decreased aversion to a bright white room when measured on a novelty-induced CPP task, whereas methylphenidate caused a long-term increase in anxiety when measured on the elevated plus maze.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Metilfenidato/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem
20.
Neuropsychopharmacology ; 37(8): 1953-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22491351

RESUMO

The altered behavioral effects of morphine, but not most other mu agonists, in mice lacking ß-arrestin 2, suggest that this scaffolding protein regulates the signaling cascade of this commonly used analgesic. One of the cascades that could be regulated by ß-arrestin 2 is cJun-N-terminal kinase (JNK), which binds with ß-arrestin 2 and modulates the analgesic effects of morphine. Using neurons lacking ß-arrestin 2 (ß-arr2-/-) to examine this interaction, we found that ß-arr2-/- neurons show altered intracellular distribution of JNK and cJun, and that morphine, but not fentanyl, increased the nuclear localization of the phosphorylated, therefore activated, form of cJun, a JNK target in dorsal root ganglia neurons. This suggests that deleting ß-arrestin 2 affects the JNK cascade. We therefore examined whether some of the behavioral phenotypes of mice lacking ß-arrestin 2 could be a result of altered JNK signaling. Indeed, two different JNK inhibitors reversed the enhanced analgesic effect of morphine, a known phenotype of ß-arr2-/- mice, to +/+ levels. Both the reduced locomotor effect of morphine and the psychomotor sensitization to repeated morphine administration in ß-arr2-/- mice were also returned to +/+ levels by inhibiting JNK. In contrast, the behavioral effects of fentanyl were neither genotype-dependent nor affected by JNK inhibition. Furthermore, a PKC inhibitor had a similar effect as inhibiting JNK in reducing the enhanced analgesic effect of morphine in ß-arr2-/- mice to +/+ levels. In summary, removing ß-arrestin 2 reveals mu receptor activation of the JNK cascade in a ligand-specific manner explaining several behavioral phenotypes of ß-arr2-/- mice.


Assuntos
Arrestinas/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Morfina/farmacologia , Atividade Motora/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Fentanila/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/antagonistas & inibidores , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-jun/metabolismo , beta-Arrestina 2 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...