Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 122(3): 184-94, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16603308

RESUMO

The molybdenum nitrogenase enzyme system, comprised of the MoFe protein and the Fe protein, catalyzes the reduction of atmospheric N(2) to NH(3). Interactions between these two proteins and between Fe protein and nucleotides (MgADP and MgATP) are crucial to catalysis. It is well established that salts are inhibitors of nitrogenase catalysis that target these interactions. However, the implications of salt effects are often overlooked. We have reexamined salt effects in light of a comprehensive framework for nitrogenase interactions to offer an in-depth analysis of the sources of salt inhibition and underlying apparent cooperativity. More importantly, we have identified patterns of salt activation of nitrogenase that correspond to at least two mechanisms. One of these mechanisms is that charge screening of MoFe protein-Fe protein interactions in the nitrogenase complex accelerates the rate of nitrogenase complex dissociation, which is the rate-limiting step of catalysis. This kind of salt activation operates under conditions of high catalytic activity and low salt concentrations that may resemble those found in vivo. While simple kinetic arguments are strong evidence for this kind of salt activation, further confirmation was sought by demonstrating that tight complexes that have previously displayed little or no activity due to the inability of Fe protein to dissociate from the complex are activated by the presence of salt. This occurs for the combination Azotobacter vinelandii MoFe protein with: (a) the L127Delta Fe protein; and (b) Clostridium pasteurianum Fe protein. The curvature of activation vs. salt implies a synergistic salt-protein interaction.


Assuntos
Clostridium/enzimologia , Molibdoferredoxina/metabolismo , Nitrogenase/antagonistas & inibidores , Nitrogenase/metabolismo , Sais/farmacologia , Sítios de Ligação , Catálise , Relação Dose-Resposta a Droga , Interações Medicamentosas , Cinética , Molibdoferredoxina/química , Nitrogenase/química , Cloreto de Sódio/farmacologia
2.
Biochim Biophys Acta ; 1621(1): 57-66, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12667611

RESUMO

An optical flow cell provided a means to conveniently measure the rate of successive Fe(2+) oxidation reactions catalyzed by horse spleen ferritin (HoSF) to determine if both ferroxidase and mineral core Fe(2+) oxidation reactions occur. The oxygen concentration and pH were held constant and multiple additions of Fe(2+)/HoSF ratios of 1, 10, 100, 150, 250 and 400 were conducted, creating core sizes ranging from 12 to 2800. During these oxidations, the absence of nonspecific Fe(OH)(3) formation and the presence (>95%) of Fe(OH)(3) deposited within the core of HoSF demonstrated the validity of monitoring iron deposition into HoSF by this procedure. Initial rates for oxidation of 5-50 Fe(2+)/HoSF established that the reaction is overall first order in Fe(2+) concentration. However, when full progress curves were analyzed at a variety of Fe(2+)/HoSF ratios, two first-order reactions (k(1) approximately 0.035 s(-1) and k(2) approximately 0.007 s(-1)) were found to contribute to the overall Fe(2+) oxidation reaction. The proportion of the fast reaction increased with increasing Fe(2+)/HoSF ratio until at approximately 400, it was the dominant reaction. For the Fe(2+)/HoSF ratios examined, the overall rate of iron deposition is independent of the size of the mineral core, a result suggesting that an increasing mineral core size does not enhance the rate of Fe(2+) oxidation. Comparison of successive additions of 1.0 Fe(2+)/HoSF showed that oxidation of the first 8-10 Fe(2+) produced a Fe(III) species with a lower molar absorptivity per Fe(III) than that of the bulk core. Measurement of the H(+)/Fe(2+) ratio confirmed this difference in behavior by giving an H(+)/Fe(2+) ratio of approximately 1.0 below and 2.0 for ratios >30 Fe(2+)/HoSF. The faster reaction was attributed to ferroxidase catalysis and the slow reaction to nonspecific ferroxidase activity of the HoSF protein shell.


Assuntos
Ferritinas/química , Ferro/química , Animais , Ferritinas/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Cavalos , Concentração de Íons de Hidrogênio , Oxidantes , Oxirredução , Oxigênio , Espectrofotometria , Baço/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...