Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326903

RESUMO

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Ratos , Animais , Nanogéis , Osso e Ossos/diagnóstico por imagem , Hidrogéis/farmacologia
2.
Arthrosc Sports Med Rehabil ; 6(2): 100855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328532

RESUMO

Purpose: To investigate the relationship between the supratrochlear rim and isolated patellar chondromalacia (PC) using magnetic resonance imaging (MRI) scans of the knee. Methods: Patients without patellofemoral pain (control group) and patients with patellofemoral pain and diagnosed with stage III or IV PC based on MRI (defect group) were retrospectively identified. Patients with a history of patellar subluxation were excluded. We used patient MRI scans to perform 20 anatomical measurements of the patellofemoral joint. We also performed 2 measurements of the anterior femoral curvature. A total of 30 patients (29 ± 8.7 years) were in the control group, and 20 patients were in the defect group (29.4 ± 9.7 years). Results: The maximum curvature (P < .001) and mean curvature (P < .001) of the anterior femoral condyle were found statistically significantly different between the groups. Patellotrochlear index (P = .03) and Insall-Salvati index (P < .001) were also found statistically significantly different between the 2 groups. Patella type III and trochlear dysplasia grade B were found more common in the defect group. Conclusions: In this Level III prognostic, case-control study, we have shown through MRI knee measurements that the isolated patellar chondromalacia in patients without a history of patellar subluxation and dislocation is correlated with the increased anterior femoral curvature in combination with patella alta.

3.
Bone Res ; 12(1): 7, 2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311627

RESUMO

Osteoarthritis (OA) is a debilitating degenerative disease affecting multiple joint tissues, including cartilage, bone, synovium, and adipose tissues. OA presents diverse clinical phenotypes and distinct molecular endotypes, including inflammatory, metabolic, mechanical, genetic, and synovial variants. Consequently, innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches. Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints, causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues. This issue has led to standardization difficulties and hindered the success of clinical trials. Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues, encompassing DNA, RNA, metabolites, and proteins, as well as their chemical properties, elemental composition, and mechanical attributes, can contribute to a more comprehensive understanding of the disease subtypes. Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment, providing a more holistic view of cellular function. Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various -omics lenses, such as genomics, transcriptomics, proteomics, and metabolomics, with spatial data. This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates. Furthermore, advanced imaging techniques, including high-resolution microscopy, hyperspectral imaging, and mass spectrometry imaging, enable the visualization and analysis of the spatial distribution of biomolecules, cells, and tissues. Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes. This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis. It explores their applications, challenges, and potential opportunities in the field of OA. Additionally, this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.


Assuntos
Osteoartrite , Humanos , Osteoartrite/diagnóstico , Membrana Sinovial/metabolismo , Metabolômica , Fenótipo , Proteômica
4.
J Knee Surg ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38336109

RESUMO

This study examines the correlation between the weight-bearing (WB) long leg radiograph (LLR)-derived hip-knee-ankle angle (HKAA) and intraoperative supine computer-assisted surgery (CAS)-derived HKAA measurements at the beginning and end of total knee arthroplasty (TKA). The primary aim of the study was to determine if WB alignment could be mimicked or inferred based on intraoperative alignment findings. We conducted a prospective analysis from a cohort of 129 TKAs undergoing a CAS TKA at a single center by a single surgeon. The HKAA was recorded using the CAS navigation system immediately postregistration of navigation data and after implantation of the prosthesis. The intraoperative HKAA was recorded in both the supine "resting" position of the knee and also while the knee was manipulated in an effort to replicate the patient's WB alignment. These measurements were compared with the HKAA recorded on pre- and postoperative WB LLRs. There was a strong correlation between the preoperative WB LLR HKAA and the intraoperative preimplant CAS-derived stressed HKAA (R = 0.946). However, there was no correlation between the postoperative WB LLR HKAA and the postimplant insertion HKAA as measured intraoperatively via CAS for either a "resting" or "stressed" position of the operated knee (R = 0.165 and R = 0.041, respectively). Thus, the interpretation of intraoperative alignment data is potentially problematic. Despite technological advances in the development and utilization of computer navigation and robotics in arthroplasty to help obtain the optimal alignment, it would seem apparent from our study that this alignment does not correlate to upright stance postoperatively. Surgeons should apply caution to the strength of assumptions they place on intraoperative coronal plane alignment findings.

5.
Biomaterials ; 304: 122410, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043465

RESUMO

Bone, a mineralized tissue, continuously undergoes remodeling. It is a process that engages the mineralization and demineralization of the bone matrix, orchestrated by the interactions among cells and cell-secreted biomolecules under the bone ionic microenvironment (BIE). The osteoinductive properties of the demineralized organic bone matrix and many biological factors have been well-investigated. However, the impact of the bone ionic environment on cell differentiation and osteogenesis remains largely unknown. In this study, we extracted and isolated inorganic bone components (bone-derived monetite, BM) using a low-temperature method and, for the first time, investigated whether the BIE could actively affect cell differentiation and regulate osteoimmune reactions. It was evidenced that the BIE could foster the osteogenesis of human bone marrow stromal cells (hBMSCs) and promote hBMSCs mineralization without using osteogenic inductive agents. Interestingly, it was noted that BIE resulted in intracellular mineralization, evidenced by intracellular accumulation of carbonate hydroxyapatite similar to that oberved in osteoblasts cultured in osteoinductive media. Additionally, BIE was found to enhance osteogenesis by generating a favorable osteoimmune environment. In a rat calvarial bone defect model, the osteogenic capacity of BIE was evaluated using a collagen type I-impregnated BM (Col-BM) composite. It showed that Col-BM significantly promoted new bone formation in the critical-size bone defect areas. Taken together, this is the first study that investigated the influence of the BIE on osteogenesis, osteoimmunology, and in situ bone tissue engineering. The innate osteoinductive potential of inorganic bone components, both in vitro and in vivo, not only expands the understanding of the BIE on osteogenesis but also benefits future biomaterials engineering for bone tissue regeneration.


Assuntos
Osteogênese , Engenharia Tecidual , Ratos , Humanos , Animais , Biônica , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Células Cultivadas , Alicerces Teciduais
6.
Bone Joint J ; 106-B(1): 77-85, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160695

RESUMO

Aims: The aim of this study was to perform the first population-based description of the epidemiological and health economic burden of fracture-related infection (FRI). Methods: This is a retrospective cohort study of operatively managed orthopaedic trauma patients from 1 January 2007 to 31 December 2016, performed in Queensland, Australia. Record linkage was used to develop a person-centric, population-based dataset incorporating routinely collected administrative, clinical, and health economic information. The FRI group consisted of patients with International Classification of Disease 10th Revision diagnosis codes for deep infection associated with an implanted device within two years following surgery, while all others were deemed not infected. Demographic and clinical variables, as well as healthcare utilization costs, were compared. Results: There were 111,402 patients operatively managed for orthopaedic trauma, with 2,775 of these (2.5%) complicated by FRI. The development of FRI had a statistically significant association with older age, male sex, residing in rural/remote areas, Aboriginal or Torres Strait Islander background, lower socioeconomic status, road traffic accident, work-related injuries, open fractures, anatomical region (lower limb, spine, pelvis), high injury severity, requiring soft-tissue coverage, and medical comorbidities (univariate analysis). Patients with FRI had an eight-times longer median inpatient length of stay (24 days vs 3 days), and a 2.8-times higher mean estimated inpatient hospitalization cost (AU$56,565 vs AU$19,773) compared with uninfected patients. The total estimated inpatient cost of the FRI cohort to the healthcare system was AU$156.9 million over the ten-year period. Conclusion: The results of this study advocate for improvements in trauma care and infection management, address social determinants of health, and highlight the upside potential to improve prevention and treatment strategies.


Assuntos
Fraturas Expostas , Hospitalização , Humanos , Masculino , Estudos Retrospectivos , Austrália , Pacientes Internados
7.
J R Soc Interface ; 20(207): 20230468, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817581

RESUMO

If it were possible to purchase tumour-spheroids as a standardised product, ready for direct use in assays, this may contribute to greater research reproducibility, potentially reducing costs and accelerating outcomes. Herein, we describe a workflow where uniformly sized cancer tumour-spheroids are mass-produced using microwell culture, cryopreserved with high viability, and then cultured in neutral buoyancy media for drug testing. C4-2B prostate cancer or MCF-7 breast cancer cells amalgamated into uniform tumour-spheroids after 48 h of culture. Tumour-spheroids formed from 100 cells each tolerated the cryopreservation process marginally better than tumour-spheroids formed from 200 or 400 cells. Post-thaw, tumour-spheroid metabolic activity was significantly reduced, suggesting mitochondrial damage. Metabolic function was rescued by thawing the tumour-spheroids into medium supplemented with 10 µM N-Acetyl-l-cysteine (NAC). Following thaw, the neutral buoyancy media, Happy Cell ASM, was used to maintain tumour-spheroids as discrete tissues during drug testing. Fresh and cryopreserved C4-2B or MCF-7 tumour-spheroids responded similarly to titrations of Docetaxel. This protocol will contribute to a future where tumour-spheroids may be available for purchase as reliable and reproducible products, allowing laboratories to efficiently replicate and build on published research, in many cases, making tumour-spheroids simply another cell culture reagent.


Assuntos
Neoplasias da Mama , Esferoides Celulares , Masculino , Humanos , Reprodutibilidade dos Testes , Avaliação Pré-Clínica de Medicamentos , Criopreservação/métodos
8.
N Engl J Med ; 389(16): 1488-1498, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37851875

RESUMO

BACKGROUND: The addition of vancomycin to beta-lactam prophylaxis in arthroplasty may reduce surgical-site infections; however, the efficacy and safety are unclear. METHODS: In this multicenter, double-blind, superiority, placebo-controlled trial, we randomly assigned adult patients without known methicillin-resistant Staphylococcus aureus (MRSA) colonization who were undergoing arthroplasty to receive 1.5 g of vancomycin or normal saline placebo, in addition to cefazolin prophylaxis. The primary outcome was surgical-site infection within 90 days after surgery. RESULTS: A total of 4239 patients underwent randomization. Among 4113 patients in the modified intention-to-treat population (2233 undergoing knee arthroplasty, 1850 undergoing hip arthroplasty, and 30 undergoing shoulder arthroplasty), surgical-site infections occurred in 91 of 2044 patients (4.5%) in the vancomycin group and in 72 of 2069 patients (3.5%) in the placebo group (relative risk, 1.28; 95% confidence interval [CI], 0.94 to 1.73; P = 0.11). Among patients undergoing knee arthroplasty, surgical-site infections occurred in 63 of 1109 patients (5.7%) in the vancomyin group and in 42 of 1124 patients (3.7%) in the placebo group (relative risk, 1.52; 95% CI, 1.04 to 2.23). Among patients undergoing hip arthroplasty, surgical-site infections occurred in 28 of 920 patients (3.0%) in the vancomyin group and in 29 of 930 patients (3.1%) in the placebo group (relative risk, 0.98; 95% CI, 0.59 to 1.63). Adverse events occurred in 35 of 2010 patients (1.7%) in the vancomycin group and in 35 of 2030 patients (1.7%) in the placebo group, including hypersensitivity reactions in 24 of 2010 patients (1.2%) and 11 of 2030 patients (0.5%), respectively (relative risk, 2.20; 95% CI, 1.08 to 4.49), and acute kidney injury in 42 of 2010 patients (2.1%) and 74 of 2030 patients (3.6%), respectively (relative risk, 0.57; 95% CI, 0.39 to 0.83). CONCLUSIONS: The addition of vancomycin to cefazolin prophylaxis was not superior to placebo for the prevention of surgical-site infections in arthroplasty among patients without known MRSA colonization. (Funded by the Australian National Health and Medical Research Council; Australian New Zealand Clinical Trials Registry number, ACTRN12618000642280.).


Assuntos
Antibacterianos , Antibioticoprofilaxia , Artroplastia de Substituição , Cefazolina , Infecção da Ferida Cirúrgica , Vancomicina , Adulto , Humanos , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Antibioticoprofilaxia/efeitos adversos , Antibioticoprofilaxia/métodos , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Austrália , Cefazolina/efeitos adversos , Cefazolina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/tratamento farmacológico , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/etiologia , Vancomicina/efeitos adversos , Vancomicina/uso terapêutico , Método Duplo-Cego , Artroplastia de Substituição/efeitos adversos , Artroplastia de Substituição/métodos , Artroplastia de Substituição/estatística & dados numéricos
9.
Arthroplast Today ; 23: 101206, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37745966

RESUMO

Background: Pelvic skeletal asymmetry can result in rotational differences and morphologic bony prominence variance between the left and right hemipelvis. When selecting bony reference points for modern computed tomography-based robotic total hip arthroplasty planning, it is unclear which bony landmarks are the most reliable and accurate, especially in the presence of significant pelvic asymmetry. Methods: A retrospective study was conducted utilizing a database of computed tomography scans. Multiple bony landmarks in the pelvis and femur were selected for comparison, with the aim of measuring pelvic asymmetry. Specifically, the study measured the average difference in lateral offset between the left and right hemipelvis caused by pelvic asymmetry. Landmarks were also compared to determine the impact of pelvic asymmetry on hip length, femur length, and limb length discrepancies. Furthermore, a scenario was simulated in the software whereby a total hip replacement was inserted, potentially changing the hip length. The impact of pelvic reference point selection on the measurement of this simulated change in hip length was examined. Results: This study population showed widespread pelvic asymmetry. The anatomical landmarks of the opposite side cannot be relied upon for predicting the anatomy of the affected side. The center of rotation axis is more reliable than the inferior obturator foramen axis for hip length discrepancy due to pelvic asymmetry (P < .05). Conclusions: Current computer-assisted surgery THR software reports measurements of global offset and hip length that do not consider pelvic asymmetry. Surgeons are not given confidence ranges to represent the potential impact of asymmetry on the global offset and hip length values. Surgeons following these numbers to guide implant position may incur implant placement error should significant pelvic asymmetry be present in a given patient.

10.
Theranostics ; 13(13): 4636-4649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649605

RESUMO

Background: Enzymes are central components of many physiological processes, and changes in enzyme activity are linked to numerous disease states, including osteoarthritis (OA). Assessing changes in enzyme function can be challenging because of difficulties in separating affected tissue areas that result in the homogenisation of healthy and diseased cells. Direct correlation between spatially-resolved enzyme distribution(s) and diseased cells/tissues can thus lead to advances in our understanding of OA pathophysiology. Herein, we present a method that uses mass spectrometry imaging (MSI) to visualise the distribution of lipase enzymes and their downstream lipid products in fresh bone and cartilage tissue sections. Immunohistostaining of adjacent tissue sections was then used to identify OA cells/tissues, which were then statistically correlated with molecular-level images. Methods: MSI was used to image lipase enzymes, their substrates, and their metabolic products to validate enzymatic activity and correlate to OA regions determined by immunohistochemistry (IHC). Based on the modified Mankin score, six non-OA and OA patient-matched osteochondral samples were analysed by matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). Due to the involvement of phospholipase A2 (PLA2) in inflammatory pathways, explant tissues were treated with IL-1ß to mimic inflammation observed in OA. Bovine explant tissues were then subject to MSI methods to observe the spatial distribution of PLA2. Results: Compared with non-OA samples, OA samples showed an elevated level of multiple arachidonic acid (AA)-containing phospholipids (P < 0.001), in which the elevation in the surface and deep layer cartilage of OA tissues is correlated to elevated PLA2 activity (P < 0.001). Bovine explant tissues treated with IL-1ß to mimic OA pathophysiology validated these results and displayed elevated PLA2 levels in OA mimic samples relative to the controls (P < 0.001). It was established that the PLA2G2A isoform specifically was responsible for PLA2 enzyme activity changes in OA tissues (P < 0.001). Conclusion: Our results present a reliable method for imaging enzyme dynamics in OA cartilage, which sets up the foundation for future spatial enzyme dynamics in the OA field. We demonstrated that OA patients exhibit increased expression of PLA2G2A at the superficial and deep cartilage zone that degrades cartilage differently at the spatial level. A tissue-specific PLA2G2A precision inhibition may be the potential target for OA.


Assuntos
Osteoartrite , Humanos , Animais , Bovinos , Osteoartrite/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Inflamação , Lipase , Poliésteres
11.
J Tissue Eng ; 14: 20417314231176901, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529249

RESUMO

The financial viability of a cell and tissue-engineered therapy may depend on the compatibility of the therapy with mass production and cryopreservation. Herein, we developed a method for the mass production and cryopreservation of 3D cartilage microtissues. Cartilage microtissues were assembled from either 5000 human bone marrow-derived stromal cells (BMSC) or 5000 human articular chondrocytes (ACh) each using a customized microwell platform (the Microwell-mesh). Microtissues rapidly accumulate homogenous cartilage-like extracellular matrix (ECM), making them potentially useful building blocks for cartilage defect repair. Cartilage microtissues were cultured for 5 or 10 days and then cryopreserved in 90% serum plus 10% dimethylsulfoxide (DMSO) or commercial serum-free cryopreservation media. Cell viability was maximized during thawing by incremental dilution of serum to reduce oncotic shock, followed by washing and further culture in serum-free medium. When assessed with live/dead viability dyes, thawed microtissues demonstrated high viability but reduced immediate metabolic activity relative to unfrozen control microtissues. To further assess the functionality of the freeze-thawed microtissues, their capacity to amalgamate into a continuous tissue was assess over a 14 day culture. The amalgamation of microtissues cultured for 5 days was superior to those that had been cultured for 10 days. Critically, the capacity of cryopreserved microtissues to amalgamate into a continuous tissue in a subsequent 14-day culture was not compromised, suggesting that cryopreserved microtissues could amalgamate within a cartilage defect site. The quality ECM was superior when amalgamation was performed in a 2% O2 atmosphere than a 20% O2 atmosphere, suggesting that this process may benefit from the limited oxygen microenvironment within a joint. In summary, cryopreservation of cartilage microtissues is a viable option, and this manipulation can be performed without compromising tissue function.

12.
Sci Rep ; 13(1): 10200, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353503

RESUMO

The osteochondral interface is a thin layer that connects hyaline cartilage to subchondral bone. Subcellular elemental distribution can be visualised using synchrotron X-ray fluorescence microscopy (SR-XFM) (1 µm). This study aims to determine the relationship between elemental distribution and osteoarthritis (OA) progression based on disease severity. Using modified Mankin scores, we collected tibia plates from 9 knee OA patients who underwent knee replacement surgery and graded them as intact cartilage (non-OA) or degraded cartilage (OA). We used a tape-assisted system with a silicon nitride sandwich structure to collect fresh-frozen osteochondral sections, and changes in the osteochondral unit were defined using quantified SR-XFM elemental mapping at the Australian synchrotron's XFM beamline. Non-OA osteochondral samples were found to have significantly different zinc (Zn) and calcium (Ca) compositions than OA samples. The tidemark separating noncalcified and calcified cartilage was rich in zinc. Zn levels in OA samples were lower than in non-OA samples (P = 0.0072). In OA samples, the tidemark had less Ca than the calcified cartilage zone and subchondral bone plate (P < 0.0001). The Zn-strontium (Sr) colocalisation index was higher in OA samples than in non-OA samples. The lead, potassium, phosphate, sulphur, and chloride distributions were not significantly different (P > 0.05). In conclusion, SR-XFM analysis revealed spatial elemental distribution at the subcellular level during OA development.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/diagnóstico por imagem , Síncrotrons , Raios X , Austrália , Osteoartrite do Joelho/diagnóstico por imagem , Progressão da Doença , Zinco , Microscopia de Fluorescência
13.
J Tissue Eng ; 14: 20417314231177136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362901

RESUMO

For bone marrow stromal cells (BMSC) to be useful in cartilage repair their propensity for hypertrophic differentiation must be overcome. A single day of TGF-ß1 stimulation activates intrinsic signaling cascades in BMSCs which subsequently drives both chondrogenic and hypertrophic differentiation. TGF-ß1 stimulation upregulates SP7, a transcription factor known to contribute to hypertrophic differentiation, and SP7 remains upregulated even if TGF-ß1 is subsequently withdrawn from the chondrogenic induction medium. Herein, we stably transduced BMSCs to express an shRNA designed to silence SP7, and assess the capacity of SP7 silencing to mitigate hypertrophy. SP7 silencing dampened both hypertrophic and chondrogenic differentiation processes, resulting in diminished microtissue size, impaired glycosaminoglycan production and reduced chondrogenic and hypertrophic gene expression. Thus, while hypertrophic features were dampened by SP7 silencing, chondrogenic differentation was also compromised. We further investigated the role of SP7 in monolayer osteogenic and adipogenic cultures, finding that SP7 silencing dampened characteristic mineralization and lipid vacuole formation, respectively. Overall, SP7 silencing affects the trilineage differentiation of BMSCs, but is insufficient to decouple BMSC hypertrophy from chondrogenesis. These data highlight the challenge of promoting BMSC chondrogenesis whilst simultaneously reducing hypertrophy in cartilage tissue engineering strategies.

14.
Aging Dis ; 14(3): 592-604, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191424

RESUMO

Osteoarthritis is the most prevalent degenerative joint disease and one of the leading causes of physical impairment in the world's aging population. The human lifespan has significantly increased as a result of scientific and technological advancements. According to estimates, the world's elderly population will increase by 20% by 2050. Aging and age-related changes are discussed in this review in relation to the development of OA. We specifically discussed the cellular and molecular changes that occur in the chondrocytes during aging and how these changes may make synovial joints more susceptible to OA development. These changes include chondrocyte senescence, mitochondrial dysfunction, epigenetic modifications, and decreased growth factor response. The age-associated changes occur not only in the chondrocytes but also in the matrix, subchondral bone, and synovium. This review aims to provide an overview of the interplay between chondrocytes and matrix and how age-related changes affect the normal function of cartilage and contribute to OA development. Understanding the alterations that affect the function of chondrocytes will emerge new possibilities for prospective therapeutic options for the treatment of OA.

15.
Cartilage ; : 19476035231169940, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37086004

RESUMO

OBJECTIVE: Chronic inflammation plays an important role in the osteoarthritis (OA) pathology but how this influence OA disease progression is unclear. Leukotriene B4 (LTB4) is a potent proinflammatory lipid mediator generated from arachidonic acid through the sequential activities of 5-lipoxygenase, 5-lipoxygenase-activating protein, Leukotriene A4 hydrolase (LTA4H) and its downstream product LTB4. The aim of this study is to investigate the involvement and the potential therapeutic target of the LTB4 pathway in OA disease progression. DESIGN: Both clinical human cartilage samples (n = 7) and mice experimental OA models (n = 6) were used. The levels of LTA4H and leukotriene B4 receptor 1 were first examined using immunostaining in human OA/non-OA cartilage and mice experimental OA models. We also determined whether the LTA4H pathway was associated with cartilage degeneration and synovitis inflammation in OA mice models and human articular chondrocytes. RESULTS: We found that both LTA4H and LTB4 receptor (BLT1) were highly expressed in human and mice OA cartilage. Inhibition of LTA4H suppressed cartilage degeneration and synovitis in OA mice model. Furthermore, inhibition of LTA4H promoted cartilage regeneration by upregulating chondrogenic genes expression such as aggrecan (ACAN), collagen 2A1 (COL2A1), and SRY-Box transcription factor 9 (SOX9). CONCLUSIONS: Our results indicate that the LTA4H pathway is a crucial regulator of OA pathogenesis and suggest that LTA4H could be a therapeutic target in combat OA.

16.
Proc Inst Mech Eng H ; 237(3): 368-374, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36734414

RESUMO

Standard practice for acetabular component placement in total hip arthroplasty (THA) is to medialise the acetabular component. Bone preservation techniques during primary THA are beneficial for possible future revisions. The goal of this study is to examine the effect of downsizing and minimising medialisation of the acetabular component on bone resection volume. The volume of bone resected during acetabular preparation for different sizes of components was calculated and the volume of bone preserved by downsizing the cup was determined. Minimising medialisation of the acetabular component by 1-3 mm from the true floor was calculated. Absolute values and percentage of bone volume preserved when acetabular components are downsized or less medialised is presented. Downsizing the acetabular component by one size (2 mm) preserves between 2.6 cm3 (size 40 vs 42) and 8.4 cm3 (size 72 vs 74) of bone volume and consistently reduces resected bone volume by at least 35% (range 35.2%-37.5%). Similarly, reducing medialisation of a 56 mm acetabular cup (as an example of a commonly implanted component) by 3 mm reduces bone loss by 5.9 cm3- 44% less bone volume resection. Downsizing and minimising medialisation of the cup in THA substantially preserves bone which may benefit future revision surgeries. Surgeons could consider implanting the smallest acceptable acetabular shell to preserve bone without compromising on head size.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Desenho de Prótese , Acetábulo/cirurgia , Reoperação , Falha de Prótese , Resultado do Tratamento
17.
Sci Rep ; 13(1): 3127, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813821

RESUMO

Minimally invasive surgery (MIS) offers several advantages to patients including minimum blood loss and quick recovery time. However, lack of tactile or haptic feedback and poor visualization of the surgical site often result in some unintentional tissue damage. Visualization aspects further limits the collection of imaged frame contextual details, therefore the utility of computational methods such as tracking of tissue and tools, scene segmentation, and depth estimation are of paramount interest. Here, we discuss an online preprocessing framework that overcomes routinely encountered visualization challenges associated with the MIS. We resolve three pivotal surgical scene reconstruction tasks in a single step; namely, (i) denoise, (ii) deblur, and (iii) color correction. Our proposed method provides a latent clean and sharp image in the standard RGB color space from its noisy, blurred, and raw inputs in a single preprocessing step (end-to-end in one step). The proposed approach is compared against current state-of-the-art methods that perform each of the image restoration tasks separately. Results from knee arthroscopy show that our method outperforms existing solutions in tackling high-level vision tasks at a significantly reduced computation time.


Assuntos
Robótica , Cirurgia Assistida por Computador , Humanos , Robótica/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Cirurgia Assistida por Computador/métodos
18.
J Funct Biomater ; 14(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36826855

RESUMO

Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.

19.
Arthroplast Today ; 19: 101084, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36688094

RESUMO

Background: Total hip arthroplasty aims to provide patients with a pain-free and stable hip joint through optimization of biomechanics such as femoral anteversion. There are studies evaluating the limits of cementless stem version, however, none assessing the range of version achieved by a cemented collarless stem. A computed tomography (CT)-based study was performed, utilizing a contemporary robotic planning platform to assess the amount of rotation afforded by a cemented collarless stem, whilst maintaining native biomechanics. Methods: The study utilized 36 cadaveric hips. All had CT scans of the pelvis and hip joints. The CT scans were then loaded into a contemporary robotic planning platform. A stem that restored the patients native femoral offset was selected and positioned in the virtual femur. The stem was rotated while checking for cortical contact at the level of the neck cut. Cortical contact was regarded as the rotation limit, assessed in both anteversion and retroversion. Target range for stem anteversion was 10°-20°. Failure to achieve target version triggered a sequence of adjustments to simulate surgical decisions. Results: Native femoral offset and target version range was obtained in 29 of 36 (80.5%) cases. Following an adjustment sequence, 4 further stems achieved target anteversion with a compromise in offset of 2.3 mm. Overall 33 of 36 (91.7%) stems achieved the target anteversion range of 10°-20°. Conclusions: Target femoral stem anteversion can be achieved using a cemented, collarless stem in a CT-based 3-dimensional model in 80.5% of hips. With a small compromise in offset (mean 2.3 mm), this can be increased to 91.7%.

20.
Cells ; 13(1)2023 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-38201241

RESUMO

Chondrogenic induction of bone-marrow-derived stromal cells (BMSCs) is typically accomplished with medium supplemented with growth factors (GF) from the transforming growth factor-beta (TGF-ß)/bone morphogenetic factor (BMP) superfamily. In a previous study, we demonstrated that brief (1-3 days) stimulation with TGF-ß1 was sufficient to drive chondrogenesis and hypertrophy using small-diameter microtissues generated from 5000 BMSC each. This biology is obfuscated in typical large-diameter pellet cultures, which suffer radial heterogeneity. Here, we investigated if brief stimulation (2 days) of BMSC microtissues with BMP-2 (100 ng/mL) or growth/differentiation factor (GDF-5, 100 ng/mL) was also sufficient to induce chondrogenic differentiation, in a manner comparable to TGF-ß1 (10 ng/mL). Like TGF-ß1, BMP-2 and GDF-5 are reported to stimulate chondrogenic differentiation of BMSCs, but the effects of transient or brief use in culture have not been explored. Hypertrophy is an unwanted outcome in BMSC chondrogenic differentiation that renders engineered tissues unsuitable for use in clinical cartilage repair. Using three BMSC donors, we observed that all GFs facilitated chondrogenesis, although the efficiency and the necessary duration of stimulation differed. Microtissues treated with 2 days or 14 days of TGF-ß1 were both superior at producing extracellular matrix and expression of chondrogenic gene markers compared to BMP-2 and GDF-5 with the same exposure times. Hypertrophic markers increased proportionally with chondrogenic differentiation, suggesting that these processes are intertwined for all three GFs. The rapid action, or "temporal potency", of these GFs to induce BMSC chondrogenesis was found to be as follows: TGF-ß1 > BMP-2 > GDF-5. Whether briefly or continuously supplied in culture, TGF-ß1 was the most potent GF for inducing chondrogenesis in BMSCs.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator 5 de Diferenciação de Crescimento/farmacologia , Medula Óssea , Condrogênese , Fator de Crescimento Transformador beta , Hipertrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...