Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(46): 5912-5915, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712387

RESUMO

We report the high adsorption of NH3 in a titanium-based metal-organic framework, MFM-300(Ti), comprising extended [TiO6]∞ chains linked by biphenyl-3,3',5,5'-tetracarboxylate ligands. At 273 K and 1 bar, MFM-300(Ti) shows an exceptional NH3 uptake of 23.4 mmol g-1 with a record-high packing density of 0.84 g cm-3. Dynamic breakthrough experiments confirm the excellent uptake and separation of NH3 at low concentration (1000 ppm). The combination of in situ neutron powder diffraction and spectroscopic studies reveal strong, yet reversible binding interactions of NH3 to the framework oxygen sites.

2.
Chemistry ; 30(20): e202303934, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38102961

RESUMO

The selective capture of methane (CH4) at low concentrations and its separation from N2 are extremely challenging owing to the weak host-guest interactions between CH4 molecules and any sorbent material. Here, we report the exceptional adsorption of CH4 at low pressure and the efficient separation of CH4/N2 by MFM-300(Fe). MFM-300(Fe) shows a very high uptake for CH4 of 0.85 mmol g-1 at 1 mbar and 298 K and a record CH4/N2 selectivity of 45 for porous solids, representing a new benchmark for CH4 capture and CH4/N2 separation. The excellent separation of CH4/N2 by MFM-300(Fe) has been confirmed by dynamic breakthrough experiments. In situ neutron powder diffraction, and solid-state nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modelling, reveal a unique and strong binding of CH4 molecules involving Fe-OH⋯CH4 and C⋯phenyl ring interactions within the pores of MFM-300(Fe), thus promoting the exceptional adsorption of CH4 at low pressure.

3.
Commun Chem ; 6(1): 55, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964287

RESUMO

The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g-1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g-1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.

4.
J Am Chem Soc ; 144(27): 11969-11974, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775201

RESUMO

The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10-2 S cm-1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.

5.
PeerJ ; 4: e2456, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672509

RESUMO

The development of species distribution models (SDMs) can help conservation efforts by generating potential distributions and identifying areas of high environmental suitability for protection. Our study presents a distribution and habitat map for lowland tapir in South America. We also describe the potential habitat suitability of various geographical regions and habitat loss, inside and outside of protected areas network. Two different SDM approaches, MAXENT and ENFA, produced relative different Habitat Suitability Maps for the lowland tapir. While MAXENT was efficient at identifying areas as suitable or unsuitable, it was less efficient (when compared to the results by ENFA) at identifying the gradient of habitat suitability. MAXENT is a more multifaceted technique that establishes more complex relationships between dependent and independent variables. Our results demonstrate that for at least one species, the lowland tapir, the use of a simple consensual approach (average of ENFA and MAXENT models outputs) better reflected its current distribution patterns. The Brazilian ecoregions have the highest habitat loss for the tapir. Cerrado and Atlantic Forest account for nearly half (48.19%) of the total area lost. The Amazon region contains the largest area under protection, and the most extensive remaining habitat for the tapir, but also showed high levels of habitat loss outside protected areas, which increases the importance of support for proper management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...