Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(4): 5233-5245, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35286810

RESUMO

In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.

2.
Soft Matter ; 18(17): 3342-3357, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297438

RESUMO

Herein, we present a systematic investigation of the impact of silica nanoparticle (SiNP) size and surface chemistry on the nanoparticle dispersion state and the resulting morphology and vanadium ion permeability of the composite ionomer membranes. Specifically, Nafion containing a mass fraction of 5% silica particles, ranging in nominal diameters from 10 nm to >1 µm and with both sulfonic acid- and amine-functionalized surfaces, was fabricated. Most notably, an 80% reduction in vanadium ion permeability was observed for ionomer membranes containing amine-functionalized SiNPs at a nominal diameter of 200 nm. Further, these membranes exhibited an almost 400% increase in proton selectivity when compared to pristine Nafion. Trends in vanadium ion permeability within a particular nominal diameter were seen to be a function of the surface chemistry, where, for example, vanadyl ion permeability was observed to increase with increasing particle size for membranes containing unfunctionalized SiNPs, while it was seen to remain relatively constant for membranes containing amine-functionalized SiNPs. In general, the silica particles tended to exhibit a higher extent of aggregation as the size of the particles was increased. From small-angle neutron scattering experiments, an increase in the spacing of the hydrophobic domains was observed for all composite membranes, though particle size and surface chemistry were seen to have varying impacts on the spacing of the ionic domains of the ionomer.

3.
ACS Appl Mater Interfaces ; 13(38): 45935-45943, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533936

RESUMO

The deployment of alkaline anion exchange membranes (AEMs) in flow battery applications has the advantage of a low cationic species crossover rate. However, the alkaline stability conjugated to the low conductivity of hydroxide ions of anion exchange membranes (AEMs) still represents a major drawback for the large deployment of such technology. In this study, three types of tetraarylpolyphosphonium (pTAP)-based copolymers (namely, CP1, CP2, and CP3) are synthesized and blended with chitosan and polyvinylidene fluoride (PVDF) for the fabrication of AEMs. Chitosan, a green biopolymer, was employed as a blend to enhance the water uptake of the base ionomer matrix. It is proposed that the abundancy of hydroxyl groups in chitosan improves considerably the ionic conductivity, water transport, and ion selectivity of the membrane, together with facilitating the dispersion of the chitosan in the pTAP copolymer matrix. The purpose of blending PVDF is instead to provide stable mechanical strength to the composite blend. The chemical, mechanical, and thermal stabilities of the three fabricated composite-blend membranes (i.e., CM1, CM2, and CM3) were characterized. All the membranes exhibited a high water retaining capacity of up to 36.26% (recorded for CM2) along with a hydroxyl ion conductivity of 17.39 mS cm-1. Due to the strong interactions between pTAP copolymers, chitosan, and PVDF polymers (confirmed also by Fourier transform infrared spectroscopy), the studied anion exchange membranes are able to retain up to 97% of the original OH conductivity after 1 M KOH treatment at room temperature for 100 h. The three membranes, namely, CM1, CM2, and CM3, have vanadium ion permeabilities measured at 20 °C of 1.775 × 10-8, 1.718 × 10-8, and 1.648 × 10-8 cm2/s, respectively, which are lower than that for the commercially available Nafion. The good stability and remarkable cell performance of the composite-blend membranes reported here make them definitely excellent candidates for the future generation of vanadium redox flow batteries.

4.
Sci Rep ; 11(1): 13841, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226644

RESUMO

Anion exchange membranes (AEMs) are becoming increasingly common in electrochemical energy conversion and storage systems around the world (EES). Proton-/cation-exchange membranes (which conduct positive charged ions such as H+ or Na+) have historically been used in many devices such as fuel cells, electrolysers, and redox flow batteries. High capital costs and the use of noble metal catalysts are two of the current major disadvantages of polymer electrolyte membrane (PEM)-based systems. AEMs may be able to overcome the limitations of conventional PEMs. As a result, polymers with anion exchange properties have recently attracted a lot of attention due to their significant benefits in terms of transitioning from a highly acidic to an alkaline environment, high kinetics for oxygen reduction and fuel oxidation in an alkaline environment, and lower cost due to the use of non-precious metals. The aim of this research was to learn more about the development of a new AEM based on poly tetraarylphosphonium ionomers (pTAP), which has high ionic conductivity, alkaline stability, thermal stability, and good mechanical properties, making it a more cost-effective and stable alternative to conventional and commercial AEMs. A simple solution casting method was used to build novel anion exchange composite membranes with controlled thicknesses using the synthesized pTAP with polysulfone (PS). To ensure their suitability for use as an electrolyte in alkaline electrochemical systems, the composite membranes were characterized using FTIR, XRD, water uptake, ionic conductivity, and alkaline stability. At 40 °C, the PS/pTAP 40/60 percent membrane had a maximum ionic conductivity of 4.2 mS/cm. The thermal and mechanical stability of the composite membranes were also examined, with no substantial weight loss observed up to 150 °C. These findings pave the way for these membranes to be used in a wide variety of electrochemical applications.

5.
Mater Today (Kidlington) ; 39: 23-46, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37974933

RESUMO

Graphene and carbon quantum dots (GQDs and CQDs) are relatively new nanomaterials that have demonstrated impact in multiple different fields thanks to their unique quantum properties and excellent biocompatibility. Biosensing, analyte detection and monitoring wherein a key feature is coupled molecular recognition and signal transduction, is one such field that is being greatly advanced by the use of GQDs and CQDs. In this review, recent progress on the development of biotransducers and biosensors enabled by the creative use of GQDs and CQDs is reviewed, with special emphasis on how these materials specifically interface with biomolecules to improve overall analyte detection. This review also introduces nano-enabled biotransducers and different biosensing configurations and strategies, as well as highlights key properties of GQDs and CQDs that are pertinent to functional biotransducer design. Following relevant introductory material, the literature is surveyed with emphasis on work performed over the last 5 years. General comments and suggestions to advance the direction and potential of the field are included throughout the review. The strategic purpose is to inspire and guide future investigations into biosensor design for quality and safety, as well as serve as a primer for developing GQD- and CQD-based biosensors.

6.
J Am Chem Soc ; 141(22): 8703-8707, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120244

RESUMO

The preparation and photophysical properties of two heavier main group element analogues of boron-dipyrromethene (BODIPY) chromophores are described. Specifically, we have prepared dipyrrin complexes of dichlorogallate (GADIPY) or phenylphosphenium (PHODIPY) units. Whereas cationic PHODIPY is labile, decomposing to a phosphine over time, GADIPY is readily prepared in good yield as a crystalline solid having moderate air- and water-stability. Crystallographically characterized GADIPY displays intense green photoluminescence (λem = 505 nm, Φem = 0.91 in toluene). These inaugural heavier main group element analogues of BODIPY offer a glimpse into the potential for elaboration to a panoply of chromophores with diverse photophysical properties.

7.
ACS Sens ; 4(1): 143-151, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30562004

RESUMO

A major challenge in effectively treating infections is to provide timely diagnosis of a bacterial or viral agent. Current cell culture methods require >24 h to identify the cause of infection. The Toll-like Receptor (TLR) family of proteins can identify classes of pathogens and has been shown to work well in an impedance-based biosensor, where the protein is attached to an electrode via a self-assembled monolayer (SAM). While the sensitivity of these sensors has been good, they contain a high resistance (>1 kΩ) SAM, generating relatively small signals and requiring longer data collection, which is ill-suited to implementation outside of a laboratory. Here, we describe a novel approach to increase the signal magnitude and decrease the measurement time of a TLR-4 biosensor by inserting a redox-active ferrocenyl-terminated alkanethiol into a mixed SAM containing hydroxyl- and carboxyl-terminated alkanethiols. The SAM formation and modification was confirmed via contact angle and X-ray photoelectron spectroscopy measurements, with TLR-4 immobilization demonstrated through a modified immunosorbent assay. It is shown that these TLR-4 biosensors respond selectively to their intended target, Gram-negative bacteria at levels between 1 and 105 lysed cells/mL, while remaining insensitive to Gram-positive bacteria or viral particles at up to 105 particles/mL. Furthermore, the signal enhancement due to the addition of ferrocene decreased the measurement time to less than 1 min and has enabled this sensor to be used with an inexpensive, portable, hand-held potentiostat that could be easily implemented in field settings.


Assuntos
Técnicas Biossensoriais/métodos , Compostos Ferrosos/química , Metalocenos/química , Salmonella typhimurium/isolamento & purificação , Receptor 4 Toll-Like/metabolismo , Técnicas Eletroquímicas/métodos , Ácidos Graxos/química , Proteínas Imobilizadas/metabolismo , Lipopolissacarídeos/metabolismo , Membranas Artificiais , Oxirredução , Multimerização Proteica , Salmonella typhimurium/química , Compostos de Sulfidrila/química
8.
Anal Chem ; 91(1): 1049-1055, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30512927

RESUMO

Single layer graphene (SLG), with its angstrom-scale thickness and strong Raman scattering cross section, was adapted for measurement of the axial ( Z-direction) probe beam profile in confocal Raman microscopy depth-profiling experiments. SLG adsorbed to a glass microscope coverslip (SLG/SiO2) served as a platform for the estimation of axial spatial resolution. Profiles were measured by stepping the confocal probe volume through the SLG/SiO2 interface while measuring Raman scattering from the sample. Using a high numerical aperture (1.4 NA) oil immersion objective, axial profiles were derived from the graphene 2D vibrational mode and fit to a Lorentzian instrument response function (IRF). Subsequently, the Z-direction spatial resolution in depth-profiling studies of polymer interfaces was estimated through convolution of the Lorentzian IRF with a step function representing the ideal junction separating the phases of interest. In the study of a bipolar polymer membrane, confocal Raman depth profiles of the AEM/CEM (anion exchange membrane/cation exchange membrane) interface show that the transition region is broader than the limiting response and are consistent with roughness at the boundary on the order of a few micrometers. Using ClO4- as a Raman active mobile ion probe, application of self-modeling curve resolution (SMCR) to spectral data sets within a profile showed ClO4- ions track the spatial distribution of the AEM phase. Finally, in measurements on a liquid-solid interface formed between 1-octanol and a polydimethylsiloxane (PDMS) membrane, the IRF derived from fitting the experimental profile was slightly narrower than those obtained from profiling SLG, indicating the potential to use polymer-liquid interfaces formed from widely available materials and reagents for estimation of axial spatial resolution in confocal Raman depth-profiling.

9.
J Am Chem Soc ; 140(5): 1743-1752, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29350035

RESUMO

Ion current densities near 1 A cm-2 at modest bias voltages (<200 mV) are reported for proton and deuteron transmission across single-layer graphene in polyelectrolyte-membrane (PEM)-style hydrogen pump cells. The graphene is sandwiched between two Nafion membranes and covers the entire area between two platinum-carbon electrodes, such that proton transfer is forced to occur through the graphene layer. Raman spectroscopy confirms that buried graphene layers are single-layer and relatively free of defects following the hot-press procedure used to make the sandwich structures. Area-normalized ion conductance values of approximately 29 and 2.1 S cm-2 are obtained for proton and deuteron transport, respectively, through single-layer graphene, following correction for contributions to series resistance from Nafion resistance, contact resistance, etc. These ion conductance values are several hundred to several thousand times larger than in previous reports on similar phenomena. A ratio of proton to deuteron conductance of 14 to 1 is obtained, in good agreement with but slightly larger than those in prior reports on related cells. Potassium ion transfer rates were also measured and are attenuated by a factor of many thousands by graphene, whereas proton transfer is attenuated by graphene by only a small amount. Rates for hydrogen and deuterium ion exchange across graphene were analyzed using a model whereby each hexagonal graphene hollow site is assumed to transmit ions with a specific per-site ion-transfer self-exchange rate constant. Rate constant values of approximately 2500 s-1 for proton transfer and 180 s-1 for deuteron transfer per site through graphene are reported.

10.
Appl Spectrosc ; 72(1): 141-150, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28782369

RESUMO

An approach based on vibrational spectral measurements is described for determining the ionizable group content of ion conducting polymer membrane materials. Aimed at supporting the assessment of membrane stability and wear characteristics, performance is evaluated for attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, confocal Raman microscopy, and ATR FT-IR microscopy using perfluorinated ionomer membrane standards. One set of ionomer standards contained a sulfonic acid ionizable group and the other a sulfonyl imide group. The average number of backbone tetrafluoroethylene (TFE) units separating the ionizable-group containing side chains was in the range of 7.2-2.1 (sulfonic acid set) and 10.5-4.6 (sulfonyl imide set). A poly(tetrafluoroethylene) (PTFE) sample was included as a blank, representing the limit of zero ionizable group (and maximum TFE) content. Calibration relationships were derived from area-normalized vibrational spectra. For all three methods, calibration models applied to independent spectral measurements of samples predicted the ratio of backbone TFE groups to ionizable groups in the repeat unit ( m) with a standard error of ≤ ±0.3. The confocal Raman and ATR FT-IR microscopy techniques achieved ideal blank responses and the lowest prediction errors, down to m ± 0.1 at the 90% confidence level. With its relative simplicity, low sample size requirements, and potential for quantitative micron-scale spatial mapping of the ionizable group content within a membrane, the approach has application to advancing materials development, including exploratory synthesis, durability and wear assessment, and in situ studies of membrane process.

11.
ACS Omega ; 3(4): 4502-4508, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458675

RESUMO

Resistive interfaces within the electrodes limit the energy and power densities of a battery, for example, a Li-ion battery (LIB). Typically, active materials are mixed with conductive additives in organic solvents to form a slurry, which is then coated on current collectors (e.g., bare or carbon-coated Al foils) to reduce the inherent resistance of the active material. Although many approaches using nanomaterials to either replace Al foils or improve conductivity within the active materials have been previously demonstrated, the resistance at the current collector active material interface (CCAMI), a key factor for enhancing the energy and power densities, remains unaddressed. We show that carbon nanotubes (CNTs), either directly grown or spray-coated on Al foils, are highly effective in reducing the CCAMI resistance of traditional LIB cathode materials (LiFePO4 or LFP and LiNi0.33Co0.33Mn0.33O2 or NMC). Moreover, the CNT coatings displace the need for currently used toxic organic solvents (e.g., N-methyl-2-pyrrolidone) by providing capillary channels, which improve the wetting of aqueous dispersions containing active materials. The vertically aligned CNT-coated electrodes exhibited energy densities as high as (1) ∼500 W h kg-1 at ∼170 W kg-1 for LFP and (2) ∼760 W h kg-1 at ∼570 W kg-1 for NMC. The LIBs with CCAMI-engineered electrodes withstood discharge rates as high as 600 mA g-1 for 500 cycles in the case of LFP, where commercial electrodes failed. The CNT-based CCAMI engineering approach is versatile with wide applicability to improve the performance of even textured active materials for both cathodes and anodes.

12.
Nanoscale ; 7(4): 1270-9, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25338314

RESUMO

A nonconjugated methacrylate terpolymer containing carbazole moieties (electron donors), 1,3,4-oxadiazole moieties (electron acceptors), and Coumarin-6 in the pendant groups was synthesized via free radical copolymerization of methacrylate monomers containing the respective functional groups. The terpolymer was formed into 57 nm particles through a mini-emulsion route. For a thin 100 nm film of the fused particles sandwiched between an indium-tin oxide (ITO) electrode and an Al electrode, the structure behaved as a nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and optically erased. The device exhibited a turn-on voltage of ca. -4.5 VDC and a 10(6) current ratio. A device in the ON high conductance state could be reverted to the OFF state with a short exposure to a 360 nm light source. The development of semiconducting colloidal inks that can be converted into electroactive devices through a continuous processing method is a critical step in the widespread adoption of these 2D manufacturing technologies for printed electronics.

13.
J Phys Chem B ; 118(49): 14115-23, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25302866

RESUMO

A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.

14.
J Phys Chem B ; 118(19): 5135-43, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24773589

RESUMO

The influence of low-molecular-weight poly(ethylene glycol) (PEG, Mw ≈ 550 Da) plasticizers on the rheology and ion-transport properties of fluorosulfonimide-based polyether ionic melt (IM) electrolytes has been investigated experimentally and via molecular dynamics (MD) simulations. Addition of PEG plasticizer to samples of IM electrolytes caused a decrease in electrolyte viscosity coupled to an increase in ionic conductivity. MD simulations revealed that addition of plasticizer increased self-diffusion coefficients for both cations and anions with the plasticizer being the fastest diffusing species. Application of a VTF model to fit variable-temperature conductivity and fluidity data shows that plasticization decreases the apparent activation energy (Ea) and pre-exponential factor A for ion transport and also for viscous flow. Increased ionic conductivity with plasticization is thought to reflect a combination of factors including lower viscosity and faster polyether chain segmental dynamics in the electrolyte, coupled with a change in the ion transport mechanism to favor ion solvation and transport by polyethers derived from the plasticizer. Current interrupt experiments with Li/electrolyte/Li cells revealed evidence for salt concentration polarization in electrolytes containing large amounts of plasticizer but not in electrolytes without added plasticizer.

15.
Anal Chem ; 84(19): 8127-32, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22947127

RESUMO

A high temperature solution processing method was adapted to prepare durable, freestanding, submicrometer thickness films for transmission infrared spectroscopy studies of ionomer membrane. The materials retain structural integrity following cleaning and ion-exchange steps in boiling solutions, similar to a commercial fuel cell membrane. Unlike commercial membrane, which typically has thicknesses of >25 µm, the structural properties of the submicrometer thickness materials can be probed in mid-infrared spectral measurements with the use of transmission sampling. Relative to the infrared attenuated total reflection (ATR) technique, transmission measurements can sample ionomer membrane materials more uniformly and suffer less distortion from optical effects. Spectra are reported for thermally processed Nafion and related perfluoroalkyl ionomer materials containing phosphonate and phosphinate moieties substituted for the sulfonate end group on the side chain. Band assignments for complex or unexpected features are aided by density functional theory (DFT) calculations.


Assuntos
Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Temperatura , Ácidos Alcanossulfônicos/síntese química , Fluorocarbonos/síntese química , Teoria Quântica , Espectrofotometria Infravermelho
16.
Chem Commun (Camb) ; 48(66): 8225-7, 2012 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-22781063

RESUMO

Water-soluble perfluorocyclobutyl (PFCB) aryl ether ionomers bearing sulfonic acid groups in the main chain and phosphonic acid end groups were prepared and used to modify the surfaces of mesoporous carbon materials containing dispersed zirconia nanoparticles. Ionomer surface grafting occurred via phosphonate bonding onto the zirconia particle surfaces.

17.
Langmuir ; 28(6): 3259-70, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22248432

RESUMO

Mesoporous nanocomposite materials in which nanoscale zirconia (ZrO(2)) particles are embedded in the carbon skeleton of a templated mesoporous carbon matrix were prepared, and the embedded zirconia sites were used to accomplish chemical functionalization of the interior surfaces of mesopores. These nanocomposite materials offer a unique combination of high porosity (e.g., ∼84% void space), electrical conductivity, and surface tailorability. The ZrO(2)/carbon nanocomposites were characterized by thermogravimetric analysis, nitrogen-adsorption porosimetry, helium pychnometry, powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Comparison was made with templated mesoporous carbon samples prepared without addition of ZrO(2). Treatment of the nanocomposites with phenylphosphonic acid was undertaken and shown to result in robust binding of the phosphonic acid to the surface of ZrO(2) particles. Incorporation of nanoscale ZrO(2) surfaces in the mesoporous composite skeleton offers unique promise as a means for anchoring organophosphonates inside of pores through formation of robust covalent Zr-O-P bonds.

18.
J Phys Chem B ; 114(46): 14972-6, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21028860

RESUMO

The effects of increasing perfluoroalkyl chain length on the molecular properties of viscosity, diffusivity, and ionic conductivity of a series of acid model compounds analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, and sulfonic protogenic groups are reported. Anhydrous proton transport by a Grotthuss-like hopping mechanism was observed to occur efficiently in phosphorus-based fluoroalkylated model acids but only when there is a relatively low perfluoroalkyl content. The decrease in degree of dissociation of the protogenic groups follows the order phosphonic > phosphinic > sulfonic, and the degree of dissociation and the magnitude of ion-ion correlations are approximately independent of chain length.

19.
Chemphyschem ; 11(13): 2871-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20602408

RESUMO

A study of proton-transport rates and mechanisms under anhydrous conditions using a series of acid model compounds, analogous to comb-branch perfluorinated ionomers functionalized with phosphonic, phosphinic, sulfonic, and carboxylic acid protogenic groups, is reported. Model compounds are characterized with respect to proton conductivity, viscosity, proton, and anion (conjugate base) self-diffusion coefficients, and Hammett acidity. The highest conductivities, and also the highest viscosities, are observed for the phosphonic and phosphinic acid model compounds. Arrhenius analysis of conductivity and viscosity for these two acids reveals much lower activation energies for ion transport than for viscous flow. Additionally, the proton self-diffusion coefficients are much higher than the conjugate-base self-diffusion coefficients for these two acids. Taken together, these data suggest that anhydrous proton transport in the phosphonic and phosphinic acid model compounds occurs primarily by a structure-diffusion, hopping-based mechanism rather than a vehicle mechanism. Further analysis of ionic conductivity and ion self-diffusion rates by using the Nernst-Einstein equation reveals that the phosphonic and phosphinic acid model compounds are relatively highly dissociated even under anhydrous conditions. In contrast, sulfonic and carboxylic acid-based systems exhibit relatively low degrees of dissociation under anhydrous conditions. These findings suggest that fluoroalkyl phosphonic and phosphinic acids are good candidates for further development as anhydrous, high-temperature proton conductors.


Assuntos
Membranas Artificiais , Organofosfonatos/química , Ácidos Fosfínicos/química , Prótons , Condutividade Elétrica , Propriedades de Superfície
20.
Anal Chim Acta ; 657(2): 154-62, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005327

RESUMO

Non-specific binding (NSB) of high-molecular-weight proteins onto electrode surfaces can complicate the application of electroanalytical techniques to clinical and environmental research, particularly in biosensor applications. We present herein various strategies to modify the surface of reticulated vitreous carbon (RVC) electrodes to suppress non-specific binding of biomolecules onto its surface. Non-specific binding and specific binding (SB) of two enzyme conjugates, neutravidin-alkaline phosphatase (NA-ALP) and biotinylated alkaline phosphatase (B-ALP), and also neutravidin itself, were studied using hydroquinone diphosphate (HQDP) as an enzyme substrate for ALP inside the pores of RVC electrodes that had been subjected to various modification schemes. The extent of NSB and SB of these biomolecules inside RVC pores was assessed by measuring the initial rate of generation of an electroactive product, hydroquinone (HQ), of the enzyme-catalyzed reaction, using linear scan voltammetry (LSV) for HQ detection. Electrodes functionalized with phenylacetic acid and poly(ethylene glycol) (PEG) showed low NSB and high SB (when biotin capture ligands were included in the modification scheme) in comparison with unmodified electrodes and RVC electrodes modified in other ways. A simple sandwich bioassay for neutravidin was performed on the RVC electrode with the lowest NSB. A concentration detection limit of 52+/-2 ng mL(-1) and an absolute detection limit of 5.2+/-0.2 ng were achieved for neutravidin when this assay was performed using a 100 microL sample size.


Assuntos
Fosfatase Alcalina/química , Avidina/análise , Técnicas Biossensoriais/métodos , Carbono/química , Eletrodos , Enzimas Imobilizadas/química , Fosfatase Alcalina/metabolismo , Biotina/química , Biotina/metabolismo , Enzimas Imobilizadas/metabolismo , Hidroquinonas/metabolismo , Organofosfatos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...