Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 69: 1-30, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29357319

RESUMO

Electron transfer is central to cellular life, from photosynthesis to respiration. In the case of anaerobic respiration, some microbes have extracellular appendages that can be utilised to transport electrons over great distances. Two model organisms heavily studied in this arena are Shewanella oneidensis and Geobacter sulfurreducens. There is some debate over how, in particular, the Geobacter sulfurreducens nanowires (formed from pilin nanofilaments) are capable of achieving the impressive feats of natural conductivity that they display. In this article, we outline the mechanisms of electron transfer through delocalised electron transport, quantum tunnelling, and hopping as they pertain to biomaterials. These are described along with existing examples of the different types of conductivity observed in natural systems such as DNA and proteins in order to provide context for understanding the complexities involved in studying the electron transport properties of these unique nanowires. We then introduce some synthetic analogues, made using peptides, which may assist in resolving this debate. Microbial nanowires and the synthetic analogues thereof are of particular interest, not just for biogeochemistry, but also for the exciting potential bioelectronic and clinical applications as covered in the final section of the review. STATEMENT OF SIGNIFICANCE: Some microbes have extracellular appendages that transport electrons over vast distances in order to respire, such as the dissimilatory metal-reducing bacteria Geobacter sulfurreducens. There is significant debate over how G. sulfurreducens nanowires are capable of achieving the impressive feats of natural conductivity that they display: This mechanism is a fundamental scientific challenge, with important environmental and technological implications. Through outlining the techniques and outcomes of investigations into the mechanisms of such protein-based nanofibrils, we provide a platform for the general study of the electronic properties of biomaterials. The implications are broad-reaching, with fundamental investigations into electron transfer processes in natural and biomimetic materials underway. From these studies, applications in the medical, energy, and IT industries can be developed utilising bioelectronics.


Assuntos
Deltaproteobacteria/química , Proteínas de Fímbrias/química , Nanofios/química , Peptídeos/química , Shewanella/química , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Deltaproteobacteria/metabolismo , Transporte de Elétrons , Proteínas de Fímbrias/metabolismo , Peptídeos/metabolismo , Shewanella/metabolismo
2.
Soft Matter ; 12(47): 9451-9457, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27841428

RESUMO

Peptide-based biomaterials are key to the future of diagnostics and therapy, promoting applications such as tissue scaffolds and drug delivery vehicles. To realise the full potential of the peptide systems, control and optimisation of material properties are essential. Here we investigated the co-assembly of the minimal amyloid motif peptide, diphenylalanine (FF), and its tert-butoxycarbonyl (Boc)-modified derivative. Using Atomic Force Microscopy, we demonstrated that the co-assembled fibers are less rigid and show a curvier morphology. We propose that the Boc-modification of FF disrupts the hydrogen bond packing of adjacent N-termini, as supported by Fourier transform infrared and fluorescence spectroscopic data. Such rationally modified co-assemblies offer chemical functionality for after-assembly modification and controllable surface properties for tissue engineering scaffolds, along with tunable morphological vs. mechanical properties.

3.
ACS Nano ; 10(8): 7436-42, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27351519

RESUMO

Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism. Here, in line with polymer chemistry paradigms, we applied a supramolecular polymer coassembly methodology to modulate peptide nanotube elongation. Utilizing this approach, we achieved a narrow, controllable nanotube length distribution by adjusting the molecular ratio of the diphenylalanine assembly unit and its end-capped analogue. Kinetic analysis suggested a slower coassembly organization process as compared to the self-assembly dynamics of each of the building blocks separately. This is consistent with a hierarchal arrangement of the peptide moieties within the coassemblies. Mass spectrometry analysis demonstrated the bimolecular composition of the coassembled nanostructures. Moreover, the peptide nanotubes' length distribution, as determined by electron microscopy, was shown to fit a fragmentation kinetics model. Our results reveal a simple and efficient mechanism for the control of nanotube sizes through the coassembly of peptide entities at various ratios, allowing for the desired end-product formation. This dynamic size control offers tools for molecular engineering at the nanoscale exploiting the advantages of molecular coassembly.


Assuntos
Nanoestruturas , Nanotubos de Peptídeos , Polímeros , Dipeptídeos , Cinética , Nanotubos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...