Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 231(2): 199-209, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857504

RESUMO

An absence of dysferlin leads to activation of innate immune receptors such as Toll-like receptors (TLRs) and skeletal muscle inflammation. Myeloid differentiation primary response gene 88 (MyD88) is a key mediator of TLR-dependent innate immune signalling. We hypothesized that endogenous TLR ligands released from the leaking dysferlin-deficient muscle fibres engage TLRs on muscle and immune cells and contribute to disease progression. To test this hypothesis, we generated and characterized dysferlin and MyD88 double-deficient mice. Double-deficient mice exhibited improved body weight, grip strength, and maximum muscle contractile force at 6-8 months of age when compared to MyD88-sufficient, dysferlin-deficient A/J mice. Double-deficient mice also showed a decrease in total fibre number, which contributed to the observed increase in the number of central nuclei/fibres. These results indicate that there was less regeneration in the double-deficient mice. We next tested the hypothesis that endogenous ligands, such as single-stranded ribonucleic acids (ssRNAs), released from damaged muscle cells bind to TLR-7/8 and perpetuate the disease progression. We found that injection of ssRNA into the skeletal muscle of pre-symptomatic mice (2 months old) resulted in a significant increase in degenerative fibres, inflammation, and regenerating fibres in A/J mice. In contrast, characteristic histological features were significantly decreased in double-deficient mice. These data point to a clear role for the TLR pathway in the pathogenesis of dysferlin deficiency and suggest that TLR-7/8 antagonists may have therapeutic value in this disease.


Assuntos
Síndromes de Imunodeficiência/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Receptores Toll-Like/metabolismo , Animais , Progressão da Doença , Disferlina , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/fisiopatologia , Ligantes , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular do Cíngulo dos Membros/complicações , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/metabolismo , Fenótipo , Doenças da Imunodeficiência Primária , Reação em Cadeia da Polimerase em Tempo Real
2.
PLoS One ; 8(6): e65468, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762378

RESUMO

INTRODUCTION: Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. METHODS: dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. RESULTS: dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. CONCLUSION: Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.


Assuntos
Membro Anterior/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Oxepinas/farmacologia , Taxa Respiratória/efeitos dos fármacos , Administração Oral , Animais , Fibrose/prevenção & controle , Membro Anterior/fisiopatologia , Membro Posterior/fisiopatologia , Humanos , Laminina/deficiência , Camundongos , Camundongos Knockout , Força Muscular/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA